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PREDICTABILITY, TOPOLOGICAL ENTROPY AND

INVARIANT RANDOM ORDERS

ANDREI ALPEEV, TOM MEYEROVITCH AND SIEYE RYU

Abstract. We prove that a topologically predictable action of a countable
amenable group has zero topological entropy, as conjectured by Hochman. On
route, we investigate invariant random orders and formulate a unified Kieffer-
Pinsker formula for the Kolmogorov-Sinai entropy of measure preserving ac-
tions of amenable groups. We also present a proof due to Weiss for the fact
that topologically prime actions of sofic groups have non-positive topological
sofic entropy.

The aim of this note is to prove the following:

Theorem 0.1. Let Γ be a countable amenable group that acts on a compact metric
space X by homeomorphism, and let S ⊂ Γ be a subsemigroup of Γ with 1Γ 6∈ S.
If every continuous function f ∈ C(X) is contained in the closed algebra generated
by {f ◦ s : s ∈ S} and the constant functions, then the action Γ y X has zero
topological entropy.

Theorem 0.1 was initially proved in the case Γ = Z and S = Z+ by Kaminśki,
Siemaszko and Szymanśki in [17] (see also [18] and [11]). In [14] Hochman gave
another proof and also generalized this to the case Γ = Z

d. In the same work
Hochman conjectured Theorem 0.1. Later, Huang, Jin and Ye in [15] proved Theo-
rem 0.1 under the additional assumption that Γ is torsion-free and locally nilpotent.
It turns out that the proof of Theorem 0.1 does not involve any considerable new
ideas or tools beyond those developed by Hochman in the same paper where the
question had been posed. However, as suggested to us by L. Bowen, without paying
too great a price, we are able to obtain more general results about predictability in
the presence of invariant random orders on groups. We will deduce Theorem 0.1
above as a particular case of the slightly more general Theorem 0.2 below.

For a countable group Γ we denote by Ord(Γ) ⊂ {0, 1}Γ×Γ the space of all orders
on Γ. The space Ord(Γ) is metrizable and compact, and admits a natural Γ-action.
(see Section 2). Let ν be a Γ-invariant measure on Ord(Γ). We will say that action
Γ y X is ν-topologically predictable relative to a topological factor map π : X → Y

if the following holds: For any f ∈ C(X), and ν-a.e. ≺∈ Ord(Γ) the function f

is contained in the closed algebra generated by {f ◦ g : g ≺ 1Γ} together with the
image of C(Y ) in C(X) under the map π∗ : C(Y ) → C(X).

Theorem 0.2. Let Γ be a countable amenable group that acts on two compact
metric spaces X,Y by homeomorphisms with a continuous Γ-equivariant map π :
X → Y . If there exists a Γ-invariant probability measure ν on the space Ord(Γ)
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such that Γ y X is ν-topologically predictable relative to π : X → Y , then the
topological entropy of the action Γ y X is equal to the topological entropy of the
action Γ y Y .

Theorem 0.1 is a special case of Theorem 0.2, obtained by taking Γ y Y to be
the trivial action on a singleton, and taking ν to be the delta measure concentrated
on the order ≺S given by

g1 ≺S g2 ⇔ g1g
−1
2 ∈ S.

In the last decade entropy theory has emerged for actions of non-amenable
groups. Entropy for measure preserving actions of sofic group was developed start-
ing with the seminal paper [4]. Sofic topological entropy was introduced by Kerr
and Li in [19]. The reader may find more details in [5], [6] and [20]. It is natural
to ask if the above results extend to the non-amenable setting.

In Section 5 we include a short proof that was communicated to us by Benjy Weiss
for the fact that topologically prime actions have zero entropy. Weiss’s proof uses
some similar techniques as the result about predictable systems. The result about
prime systems also applies to actions of sofic groups, with appropriate adjustments.
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tute for Mathematical Studies and the department of mathematics at the University
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1. Preliminaries

In this paper Γ y X will denote a left action of a countable group Γ by homeo-
morphisms on a compact metric spaceX . We will denote by Prob(X) the (compact,
convex) space of Borel probability measures on X , and by ProbΓ(X) the subset of
Γ-invariant Borel probability measures. We will use the notation Γ y (X,µ) to
indicate that µ ∈ ProbΓ(X), and in this case we will say that the Γ action on (X,µ)
is measure preserving. For two partitions α and β denote their join by α∨β. Simi-
larly, for two σ-algebras A and B denote by A∨B the smallest σ-algebra containing
both. We will say that a partition β is finer than a partition α if each element of
α is a union of elements from β.

Let α be a countable measurable partition of a standard probability spaceX . We
denote Hµ(α) its Shannon entropy; for two partitions α and β we denote Hµ(α|β)
the Shannon entropy of partition α relative to partition β. For a partition α and a
σ-subalgebra A of a standard probability space, the Shannon entropy of α relative
to A is given by

Hµ(α|A) = −

∫

logµ (α | A) dµ.

If α is a partition of finite Shannon entropy and A is a σ-subalgebra, then the
following holds:

Hµ(α|A) = inf{Hµ(α|β), where β ⊆ A, Hµ(β) < +∞};
2



Moreover, if (βi)
∞
i=1 is a sequence of partitions having finite Shannon entropy and

A is the smallest σ-subalgebra that contains each βi then

Hµ(α|A) = lim
i→∞

Hµ(α|
∨

j≤i

βj).

We recall that countable group Γ is amenable if it has a Følner sequence, namely
a sequence (Fi)

∞
i=1 of finite subsets such that for any g ∈ Γ the following holds:

lim
i→∞

|gFi \ Fi|

|Fi|
= 0.

It is a well known fact that a countable group Γ is amenable if and only if any
action of Γ by continuous affine transformations on a compact convex subset of
a separable locally convex topological vector space has a fixed point (for this and
many other equivalent conditions for amenability, see for instance [28]).

For a countable partition α = {B1, B2, . . .} and g ∈ Γ we denote

αg = {g−1(B1), g
−1(B2), . . .}.

If F ⊂ Γ is finite let αF =
∨

g∈F α
g. This is again a countable partition. If F ⊂ Γ

is infinite, we let αF denote the smallest σ-subalgebra containing all αg for g ∈ F .
Now suppose that (Fi)

∞
i=1 is a Følner sequence for the group Γ. We will de-

note the Kolmogorov-Sinai entropy of the partition α relative to a Γ-invariant σ-
subalgebra A ⊂ Borel (X) by hΓ(α,X, µ|A). This is defined by the formula

hΓ(α,X, µ|A) = lim
i→∞

Hµ(α
Fi |A)

|Fi|
.

It is known that hΓ(α,X, µ|A) does not depend on the choice of the Følner sequence.
The Kolmogorov-Sinai entropy of the action relative to a σ-subalgebra A will be
denoted by hΓ(X,µ|A). This is given by

hΓ(X,µ|A) = sup{hΓ(α,X, µ|A) : Hµ(α) <∞}.

We denote the Kolmogorov-Sinai entropy of the factor corresponding to A by

hΓ(A, X, µ) = sup{hΓ(α,X, µ) : α ⊂ A, Hµ(α) <∞}.

For an invariant σ-subalgebra B we denote hΓ(B, X, µ|A) the entropy of the factor
corresponding to B relative to A.

The Kolmogorov-Sinai theorem asserts that

hΓ(α
Γ ∨ A, X, µ|A) = hΓ(α,X, µ|A).

The topological entropy of an action Γ y X of a countable amenable group Γ
on a compact space X will be denoted by hΓ(X).

2. Invariant random orders and invariant random pasts

In the sequel we will employ some rudimentary theory of random orders on
groups. Random orders were successfully used in [24] and [25] to prove results con-
cerning deterministic orders on amenable groups. See the book [8] for background
and much more. Particular invariant random orders have been applied to entropy
theory, notably Keiffer’s paper [21] about actions of amenable groups, and [1, 3, 31]
for actions of countable but not necessarily amenable groups.
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Consider the set 2Γ×Γ of binary relations on a countable group Γ, endowed with
the product topology. This topology makes 2Γ×Γ a compact metrizable space. We
will consider the left action Γ y 2Γ×Γ given by

x(g · R)y ⇔ (xg)R(yg) for x, y, g ∈ Γ and R ∈ 2Γ×Γ.

Recall that a relation ≺∈ 2Γ×Γ on Γ is called a partial order if the following
requirements hold:

(1) It is antisymmetric, which means that if x ≺ y then y 6≺ x.
(2) It is transitive, which means that if x ≺ y and y ≺ z then x ≺ z.

A partial order ≺ is called total if for any x, y ∈ Γ either x ≺ y, y ≺ x or x = y. Let
Ord(Γ) denote the set of all partial orders on Γ. Denote the set of all total orders
on Γ by TotalOrd(Γ). It is not hard to see that both TotalOrd(Γ) and Ord(Γ)
are closed subsets of 2Γ×Γ. It is easy to see that Ord(Γ) and TotalOrd(Γ) are
Γ-invariant subsets.

To a partial order ≺ we associate the past (at the identity):

Φ≺ = {γ ∈ Γ : 1Γ ≺ γ} .

A fixed point for the action Γ y Ord(Γ) is called a (deterministic) invariant order on
Γ. If ≺ is an invariant order, then it is straightforward to check that the associated
past Φ≺ ⊂ Γ is a semigroup that does not contain the identity 1Γ. If ≺∈ Ord(Γ)
is a (deterministic) invariant total order, then the associated past Φ≺ ⊂ Γ is an
algebraic past for Γ, namely it is a semigroup with the property that

Γ = Φ≺ ⊎Φ−1
≺ ⊎ {1Γ}.

A group Γ that admits a deterministic invariant total order (or equivalently, admits
an algebraic past) is called left-orderable. An invariant random order on Γ is
a Γ-invariant Borel probability measure on Ord(Γ). An invariant random total
order is a Γ-invariant Borel probability measure on TotalOrd(Γ). Equivalently, it
is an invariant random order that is supported on the set of total orders. Thus,
consistently with our notation the space of invariant random orders will be denoted
by

ProbΓ(Ord(Γ)),

and the space of invariant random total orders will be denoted by

ProbΓ(TotalOrd(Γ)).

In the sequel we will use the probabilistic convention and write “≺ is an invariant
random total order with law ν” to mean that≺ is anOrd(Γ)-valued random variable
with distribution ν, where

ν ∈ ProbΓ(Ord(Γ)).

In this case for F ∈ L1(ν) we will use the notation

E≺F (≺) =

∫

F (≺)dν(≺).

In contrast to deterministic invariant orders, every countable group Γ admits
at least one invariant random total order. Namely, consider the random process
(ξγ)γ∈Γ of independent random variables such that each ξγ has uniform distribution
on [0, 1]. Then each realization of this process induces an order on Γ.

We now define what it means for one invariant random total order to extend
another: Let ν, ν̃ ∈ ProbΓ(Ord(Γ)) be invariant random orders on Γ. Recall that

4



a joining of ν and ν̃ is a probability measure λ ∈ Prob(Ord(Γ) × Ord(Γ)) that
is invariant under the Γ-action on the product space and has the property that
push-forward of the projection onto the first coordinate coincides with ν and the
push-forward of the projection of λ onto the second coordinate coincides with ν̃.
We say that an invariant random order ν̃ extends ν if there exists a joining λ of ν
and ν̃ with the property that

(1) λ ({(≺, ≺̃) ∈ Ord(Γ)×Ord(Γ) : x ≺ y ⇒ x≺̃y}) = 1

Lemma 2.1. Let Γ be an amenable group. Then any invariant random order on
Γ can be extended to an invariant random total order.

Proof. Let ν ∈ ProbΓ(Ord(Γ)) be an invariant random order. Consider the set J(ν)
that consists of Borel probability measures λ ∈ Prob(Ord(Γ)×TotalOrd(Γ)) whose
push-forward via the projection onto the first coordinate is equal to ν and have the
property that (1) holds. Then J(ν) is a non-empty, compact convex set. Because ν
is a Γ-invariant probability measure, the set J(ν) is also invariant under the natural
action of Γ. By amenability of Γ, the action Γ y J(ν) by affine transformations
admits a fixed point λ ∈ J(ν). It follows that any such fixed point is a joining of ν
with some invariant random total order ν̃ that extends ν. �

For torsion free locally nilpotent groups, the Rhemtulla-Formanek Theorem
[9, 29] asserts that any deterministic invariant order extends to a deterministic
invariant total order. Equivalently, for this class of groups any sub-semigroup
that does not contain the identity extends to an algebraic past. The Rhemtulla-
Formanek theorem was used in [15] to prove Theorem 0.1 for the class of torsion
free locally nilpotent groups. Examples provided in the same paper show that
the conclusion of the Rhemtulla-Formanek Theorem fails for more general groups,
including some left-orderable amenable ones. Lemma 2.1 can be viewed as an
easy “random substitute” for the Rhemtulla-Formanek theorem that applies to all
amenable groups

Question 2.2. Does the statement of Lemma 2.1 hold without the amenability
assumption on the group?

Let ν ∈ ProbΓ(Ord(Γ)) be an invariant random order. Recall that the action
Γ y X is topologically ν-predictable relative to π : X → Y if for any f ∈ C(X),
and ν-a.e. ≺∈ Ord(Γ) the function f is contained in the closed algebra generated
by {f ◦ g : g ≺ 1Γ} together with the image of C(Y ) in C(X) under the map
π∗ : C(Y ) → C(X).

Now suppose µ ∈ ProbΓ(X) is a Γ-invariant probability measure for the action
Γ y (X,µ) and ν ∈ ProbΓ(Ord(Γ)) is an invariant random order. We say that the
measure preserving action Γ y (X,µ) is measure-theoretically ν-predictable relative
to π : X → Y if for every countable Borel partition α with Hµ(α) <∞ we have that
for ν-a.e ≺∈ Ord(Γ), the partition α is measurable with respect to the µ-completion
of αΦ≺ ∨ π−1(Borel (Y )).

Let us introduce the following random generalization for the notion of an alge-
braic past. An invariant random past on Γ is a random function Φ̃ : Γ → 2Γ, or
equivalently a Borel probability measure on (2Γ)Γ, with the following properties:

(i) For almost every instance of Φ̃ : Γ → 2Γ and for all g ∈ Γ the condition

g 6∈ Φ̃(g) holds.
5



(ii) For almost every instance of Φ̃ : Γ → 2Γ, for all g, h ∈ Γ, if g ∈ Φ̃(h) then

Φ̃(g) ⊂ Φ̃(h).

(iii) If g 6= h then either g ∈ Φ̃(h) or h ∈ Φ̃(g).

(iv) For all g ∈ Γ the random subsets Φ̃(g) and Φ̃(1Γ)g have the same distribu-
tion.

It follows directly from the definitions that if ≺ is an invariant random total
order, then the random function given by g 7→ {h ∈ Γ : h ≺ g} defines an invariant

random past. If Φ̃ is a random past on Γ with law ν̃ ∈ Prob((2Γ)Γ) and F ∈ L1(ν̃)
we use the following probabilistic notation:

EΦ̃F (Φ̃) =

∫

F (Φ̃)dν̃(Φ̃).

3. The Kieffer-Pinsker formula

In this section we state and prove a simultaneous but rather straightforward
generalization of Kieffer’s entropy formula [21] and of Pinsker’s entropy formula for
actions of amenable groups [16, Theorem 3.1]. The earliest and most basic case of
this formula for the group Γ = Z with the usual order goes back to Kolmogorov’s
very first paper [23] on entropy.

Theorem 3.1 (The Kieffer-Pinsker formula). Let Γ y (X,µ) be a probability

measure preserving action of a countable amenable group Γ, let Φ̃ : Γ → 2Γ be
an invariant random past on Γ with Φ = Φ̃(1Γ) ⊂ Γ. Suppose that α is a Borel
partition with Hµ(α) < +∞ and that A is a Γ-invariant σ-algebra on X. Then the
following holds:

hΓ(α,X, µ|A) = EΦ̃Hµ(α|α
Φ ∨ A),

Before the proof we will establish a couple of auxiliary lemmata. We assume
that Φ̃ : Γ → 2Γ, Φ = Φ̃(1Γ), α and A are as in the statement of Theorem 3.1.

Lemma 3.2. For any ε > 0 there is such a finite subset D of Γ so that for any
D′ ⊃ D

(2) EΦ̃Hµ(α|α
D′∩Φ ∨ A) ≤ EΦ̃Hµ(α|α

Φ ∨ A) + ε.

Proof. Let us consider an arbitrary subset Φ ⊂ Γ. Let (Di)
∞
i=1 be an increasing

sequence of finite subsets of Γ such that
⋃

Di = Γ. A classical argument using the
Martingale convergence theorem and Chung’s Lemma (as in [10, Theorem 14.28])
implies that

lim
i→∞

Hµ(α|α
Di∩Φ ∨ A) = Hµ(α|α

Φ ∨ A).

Using the monotone convergence theorem it follows that for sufficiently big i ∈ N

(3) EΦ̃Hµ(α|α
Di∩Φ ∨ A) ≤ EΦ̃Hµ(α|α

Φ ∨ A) + ε.

Choose i ∈ N that satisfies (3), and let D = Di. By monotonicity of conditional
entropy (as in [10, Proposition 14.18]), for any superset D′ ⊃ D we have

EΦ̃Hµ(α|α
D′∩Φ ∨ A) ≤ EΦ̃Hµ(α|α

D∩Φ ∨ A).

Thus (2) holds for any D′ ⊃ D.
�
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Lemma 3.3. For every finite F ⊂ Γ we have

(4) Hµ

(

αF | A
)

=
∑

g∈F

EΦ̃Hµ

(

α | αFg−1∩Φ ∨A
)

.

Proof. Fix an instance of Φ̃ : Γ → 2Γ that satisfies properties (i)–(iii) of an invariant

random past. Write F as F = {g1, . . . , g|F |} ordered so that gj ∈ Φ̃(gi) iff i < j.
Applying the chain rule for entropy (as in [10, Proposition 14.18]) we have:

Hµ

(

αF | A
)

=

|F |
∑

i=1

Hµ



αgi |
∨

j<i

αgj ∨ A





This can be rewritten as :

Hµ(α
F |A) =

∑

g∈F

Hµ(α
g|αF∩(Φ̃(g)) ∨ A).

Taking the expectation over Φ̃, using property (iv) of an invariant random past and
linearity of expectation we get (4).

�

Proof of Theorem 3.1. Let (Fi)
∞
i=1 be a Følner sequence in Γ.

By Lemma 3.3 we have:

(5) Hµ(α
Fi |A) =

∑

g∈Fi

EΦ̃Hµ(α|α
Fig

−1∩Φ ∨ A).

Choose any ε > 0, and let D ⊂ Γ as in Lemma 3.2. Then for any D′ ⊃ D we have
that

EΦ̃Hµ(α|α
Φ ∨ A) ≤ EΦ̃Hµ(α|α

D′∩Φ ∨A) ≤ EΦ̃Hµ(α|α
Φ ∨ A) + ε

Let ∂DFi denote the set of g ∈ Fi such that D 6⊂ Fig
−1. From the definition of a

Følner sequence we can derive that

lim
i→∞

|∂DFi|

|Fi|
= 0.

For any g ∈ Fi \ ∂DFi we will have

EΦ̃Hµ(α|α
Φ ∨ A) ≤ EΦ̃Hµ(α|α

Fig
−1∩Φ ∨A) ≤ EΦ̃Hµ(α|α

Φ ∨ A) + ε

The latter together with equation (5) implies that

EΦ̃Hµ(α|α
Φ ∨ A) ≤ lim

i→∞

Hµ(α
Fi |A)

|Fi|
≤ EΦ̃Hµ(α|α

Φ ∨ A) + ε.

This finishes the proof since ε > 0 is arbitrary. �

Corollary 3.4. Let Γ be a countable amenable group. Then a probability measure
preserving action Γ y (X,µ) has zero Kolmogorov-Sinai entropy relative to a factor
map π : X → Y if and only if it is measure-theoretically ν-predictable relative to
π : X → Y with respect to some (hence any) invariant random total order.

Proof. An action Γ y (X,µ) has zero Kolmogorov-Sinai entropy if and only if for
any finite measurable partition α we have

hΓ(α,X, µ|A) = 0.
7



By the Kieffer-Pinkser formula, for any invariant random past this is equivalent to

EΦ̃Hµ(α|α
Φ ∨ A) = 0,

which is equivalent to having Hµ(α|α
Φ ∨ A) = 0 for a.e. realization of Φ̃. This is

equivalent to the statement that α is measurable with respect to the µ-completion
of αΦ ∨A. �

Furthermore, predictability of a relative generator with respect to an invariant
random partial order implies zero relative entropy:

Proposition 3.5. Let Γ y (X,µ) be a measure preserving action of a countable
amenable group Γ and let A be a Γ-invariant σ-subalgebra. Suppose that ≺ is an
invariant random partial order on Γ. Let α be a finite Shannon entropy partition
of X such that α ⊂ A ∨ αΦ≺ for almost every instance of ≺ and

(6) αΓ ∨ A = Borel(X) mod µ.

Then hΓ(X,µ|A) = 0.

Proof. Denote the law of the invariant random partial order≺ by ν ∈ ProbΓ(Ord(Γ)).
By Lemma 2.1, we can find an invariant random total order ν̃ ∈ ProbΓ(Ord(Γ))
that extends ν. Because ν̃ extends ν it follows that α ⊂ A∨αΦ≺ for ν̃ -a.e instance
of ≺. This implies by Theorem 3.1 that hΓ(X,µ|A) = 0. �

Seward [30] defined the relative Rokhlin entropy for measure-preserving actions
of countable groups. For an ergodic measure-preserving action Γ y (X,µ) of a
countable group Γ and Γ-invariant σ-subalgebra, it is given by

hRok

Γ (X,µ | A) = inf
α
Hµ(α | A),

where α ranges over all generating partitions (countable partitions α that sat-
isfy (6)). For a free action of an amenable group, Rokhlin entropy coincides with
Kolmogorov-Sinai entropy. Seward proved the following far-reaching extension of
Sinai’s theorem: Any free ergodic measure-preserving action Γ y (X,µ) with pos-
itive Rokhlin entropy admits a Bernoulli factor, or equivalently it admits a (non-
trivial) partition whose iterates under Γ are jointly independent [32]. As an imme-
diate corollary of Seward’s Bernoulli factor theorem we have:

Proposition 3.6. Let Γ be a countable group, let ν be an invariant random par-
tial order on Γ. A free ergodic action Γ y (X,µ) that is measure-theoretically
predictable with respect to some invariant random partial order has zero Rokhlin
entropy.

Proof. If a free ergodic action Γ y (X,µ) has positive Rokhlin entropy then Se-
ward’s Bernoulli factor theorem says that it admits a non-trivial finite partition α
with independent Γ-iterates. Such a partition α is not measurable with respect to
the µ-completion of αΦ≺ , for any order ≺ on Γ. Hence, a free ergodic action with
positive Rokhlin entropy is not measure-theoretically predictable with respect to
any invariant random order. �

Question 3.7. Is there a direct proof of Proposition 3.6 that does not use Seward’s
Bernoulli factor theorem?

8



4. From topological predictability to measure-theoretical

predictability via µ-continuous partitions

In this section we complete the proof of Theorem 0.2. The steps are essentially
identical to Hochman’s proof in [14], where only the lexicographic past on the
group Z

d was considered, without the “relative” version (the image of the factor
map π : X → Y was the trivial one-point space). Just as in Hochman’s proof, we
will rely on the variational principle for topological entropy.

Theorem 4.1 (The Variational principle [34, 26, 27]). Let Γ y X be an action of
a countable amenable group by homeomorphisms on a compact metrizable space X.
Then the topological entropy hΓ(X) is given by

hΓ(X) = sup
µ∈ProbΓ(X)

hΓ(X,µ).

Note that Kerr and Li proved a more general variational principal for sofic en-
tropy [19].

As in the previous sections, let X be a compact metric space and let µ be a Borel
probability measure on it. The Rokhlin distance dµ(α, β) between two partitions α
and β of finite Shannon entropy is defined by the formula

dµ(α, β) = Hµ(α|β) +Hµ(β|α).

It is well known that for a measure preserving action of an amenable group the
Kolmogorov-Sinai entropy is an 1-Lipschitz function with respect to the Rokhlin
metric on the space of partition with finite Shannon entropy.

A partition α of (X,µ) is said to be a µ-continuous partition if there is a contin-
uous function f : X → R such that pieces of α are equal to the level sets of f up to
µ-null subset. This definition is due to Hochman [14]; he proved the following (in
the more general setup where X is a normal topological space and µ is a regular
Borel probability measure):

Proposition 4.2 (Hochman [14]). For any Borel probability measure µ ∈ Prob(X),
the µ-continuous partitions are dense with respect to the Rokhlin metric.

Proof of Theorem 0.2. Let Γ y X ,Γ y Y and π : X → Y be as in the statement
of Theorem 0.2. Let

A = π−1(Borel (Y )) ⊂ Borel (X).

Let µ be a Γ-invariant measure on X . We note that hΓ(Y, π(µ)) = hΓ(A, X, µ).
Take any µ-continuous partition α of (X,µ) with H(α) < ∞. Then topological
predictability of the action relative to π : X → Y implies that α is measurable with
respect to the completion of αΦ≺ ∨ A for almost every instance of the invariant
random total order ≺. By Corollary 3.4 of Theorem 3.1 it follows that

hΓ(α,X, µ | A) = 0.

Since this holds for a set of partitions that is dense with respect to the Rokhlin
metric, and the function α 7→ hΓ(α,X, µ | A) is continuous (in fact 1-Lipschitz with
respect to the Rokhlin-metric), it follows that

hΓ(X,µ | A) = 0.

The Abramov-Rokhlin entropy addition formula for amenable group actions [35]
asserts that

hΓ(X,µ) = hΓ(A, X, µ) + hΓ(X,µ | A).
9



Thus for any µ ∈ ProbΓ(X):

hΓ(X,µ) = hΓ(A, X, µ) = hΓ(Y, π(µ)).

By the variational principle (Theorem 4.1) it follows that

hΓ(X) ≤ hΓ(Y ).

Since the topological entropy for actions of amenable groups is factor-monotone,
we have

hΓ(X) = hΓ(Y ).

�

5. Prime actions have zero topological entropy

An action Γ y X is called topologically prime if every factor map is either
an isomorphism or it maps onto the trivial action on the one-point space. More
generally, if π : X → Y is a topological factor map between Γ y X and Γ y Y , we
say that π : X → Y is a topologically prime extension if Γ y X has no intermediate
factors. Equivalently, C(X) has no strict Γ-invariant C∗-subalgebras that strictly
contain π∗(C(Y )). King constructed and example of a homeomorphism on the
Cantor set that is topologically prime [22], because it has “topological minimal
self-joinings” in the sense of del Junco [7]. The later property, called “doubly
minimal” by Weiss [36], means that any pair of points x, y ∈ X that are not in
the same orbit have a dense orbit in X ×X . More generally, any free and ergodic
measure-preserving Z-action with zero entropy admits a uniquely ergodic doubly
minimal model [36]. In particular there is topologically prime model for any free,
ergodic Z-action with zero entropy [11, Theorem 13.1].

The following result was communicated to us by Benjy Weiss. With his kind
permission we reproduce his proof.

Theorem 5.1. Suppose that Γ is a countable amenable group that acts on X and
Y , and that π : X → Y is a topologically prime extension. Then hΓ(X) = hΓ(Y ).

For Γ = Z and π equal to the trivial factor, a proof of Theorem 5.1 appears in
[33]. See also [11, Section 13].

Proof. Let π : X → Y be a topologically prime extension. Choose any Γ-invariant
measure µ ∈ ProbΓ(X), and let ν ∈ Probγ(Y ) be the push-forward of µ via π. We
will prove that

(7) hΓ(X,µ) = hΓ(Y, ν).

We first prove this under the additional assumption that µ satisfies the following
property:

(8) inf
{

µ(A) : A is not contained in the µ-completion of π−1(Borel (Y ))
}

= 0.

Since µ-continuous partitions are dense with respect to the Rokhlin metric, we
can find for any ǫ > 0 a µ-continuous partition α such that

(9) 0 < Hµ(α | π−1Borel(Y )) < ǫ.

It follows that
hµ(α,X, µ | π−1Borel (Y )) < ǫ.

Since π : X → Y is a topologically prime extension, for any f ∈ C(X) \ π∗(C(Y )),
C(X) is contained in the Γ-invariant C∗-algebra generated by f and π∗(C(Y )). By

10



the left inequality in (9), α is not contained in the µ-completion of π−1(Borel (Y )).
It follows that

(α ∨ π−1Borel (Y ))Γ = Borel (X) mod µ.

By Kolmogorov-Sinai theorem,

hΓ(X,µ | π−1Borel (Y )) < ǫ.

Since ǫ > 0 was arbitrary, this shows that

hΓ(X,µ | π−1Borel(Y )) = 0.

By the Abramov-Rokhlin entropy addition formula, this implies (7).
It remains to prove that (7) holds even when µ ∈ ProbΓ(X) does not satisfy

(8). If (8) does not hold, then there exists ǫ > 0 so that every A ∈ Borel (X) with
µ(A) < ǫ is also measurable with respect to the µ-completion of π−1Borel (Y ). In
this case the factor map π : X → Y is of the following very degenerate form: Let
µ = p ·µc+(1−p)·µa be the representation of µ as a convex combination of a purely
continuous measure µc ∈ ProbΓ(X) and purely atomic measure µa ∈ ProbΓ(X).
Then π : X → Y gives a measure-preserving isomorphism between Γ y (X,µc) and
Γ y (Y, π(µc)). In particular, the factor map π : X → Y is finite-to-one (actually
bounded-to-one) µ-almost everywhere. Because Γ is an infinite amenable group,
finite-to-one extensions do not increase entropy and (7) follows in this case.

�

Remark 5.2. In the proof above we use the fact that Γ is infinite to conclude that
finite-to-one extensions do not increase entropy. If Γ is a finite group, Theorem
5.1 fails. To see this, take Γ y X to be the action of a finite group Γ on itself
by translations, and take Γ y Y to be an action of Γ on the cosets of a maximal
proper subgroup.

We now consider topologically prime actions of sofic groups. For a measure
preserving action Γ y (X,µ) of a sofic group Γ with a sofic approximation Σ, let
hΣΓ (X,µ) denote the sofic entropy of the action (for definitions see for instance [5]).

The first-named author and Brandon Seward [2, Proposition 8.8] and indepen-
dently Ben Hayes [12, Proposition 2.7 (i)] proved the following Abramov-Rokhlin-
type inequality:

Proposition 5.3 (Abramov-Rokhlin sub-addition formula for sofic entropy). Let
Γ be a sofic group with sofic approximation Σ, and let π : X → Y be a factor
map between the measure preserving actions Γ y (X,µ) and Γ y (Y, µ). If α is a
measurable partition of X such that

(10) (α ∨ π−1(Borel (Y )))Γ ⊃ Borel (X) mod µ,

then
hΣΓ (X,µ) ≤ hΣΓ (Y, ν) +Hµ(α | π−1(Borel(Y )).

The above is a simplified and slightly less general form of the corresponding
statements from [2, 12].

The following proposition on sofic entropy of finite-to-one extension follows from
the main theorem of Hayes’ work [13] relating sofic entropy and spectral properties
of actions. That work establishes much more general results. In particular, the
statement below will hold with compact extensions instead of finite-to-one. See the
discussion following Proposition 5.7 in [6]. The case needed in our exposition allows
for a short combinatorial proof, which we include for the sake of self-containment.
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Proposition 5.4. Let Γ be a countably infinite sofic group with sofic approximation
Σ, and let π : X → Y be a finite-to-one factor map between the measure preserving
actions Γ y (X,µ) and Γ y (Y, ν). Then

(11) hΣΓ (X,µ) ≤ hΣΓ (Y, ν).

Proof. Because π : X → Y is finite-to-one, by removing null sets we can assume
that |π−1({y})| is a positive integer for every y ∈ Y . For every n ∈ N let

Yn = {y ∈ Y : π−1({y}) = n} and Xn = π−1(Yn).

Let us first assume in addition that Γ y (Y, ν) is aperiodic. By the Abramov-
Rokhlin sub-addition formula for sofic entropy (Proposition 5.3) it is enough to
show that for every ǫ > 0 we can find a measurable partition α of X that satisfies
(10) and Hµ(α) < ǫ. Because Γ y (Y, ν) is aperiodic, so is Γ y (X, ν). So (X,µ) is
a standard probability space with no atoms. Let φ : X → [0, 1] be a Borel bijection.

Because Γ y (Y, ν) is aperiodic whenever ν(Yn) > 0 we can find arbitrary
small ǫn > 0 and a Borel measurable set An ⊂ Yn so that

⋃

g∈Γ g(An) = Yn and

ν(An) = ǫn (for instance by considering the ergodic decomposition of Γ y (Y, ν)).
Because π : X → Y is finite-to-one we can define ψ : X → N by

ψ(x) = #
{

x′ ∈ π−1 ({π(x)}) : φ(x′) ≤ φ(x)
}

.

Then for every y ∈ Yn, ψ induces a bijection between π−1 ({y}) and {1, . . . , n}. We
denote the inverse by

ψ−1
y : {1, . . . , n} → π−1 ({y}) .

Also we have a Borel bijection Ψ : X →
⋃∞

i=1 (Yn × {1, . . . , n}) given by

Ψ(x) = (π(x), ψ(x)).

For y ∈ Yn and g ∈ Γ define a permutation Πg,y of {1, . . . , n} by

Πg,y(i) = ψ
(

g(ψ−1
y (i))

)

for i ∈ {1, . . . , n}.

Then the map (g, y) 7→ Πg,y is a Borel map from Γ× Yn to the set of permutations
on {1, . . . , n}. For every n ∈ N and i ∈ {1, . . . , n} let

Bn,i = π−1(An) ∩ ψ
−1({i}).

Consider the partition α of X given by

α = {Bn,i : n ∈ N and 1 ≤ i ≤ n} ∪ {X \
⋃

n∈N

π−1(An)}.

It follows that

Hµ(α) <

∞
∑

n=1

ǫn
(

log(ǫ−1
n ) + log(n)

)

+ log

(

1−

∞
∑

n=1

ǫn

)

,

So if (ǫn)
∞
n=1 are sufficiently small Hµ(α) < ǫ. In order to check that α is a relative

generator in the sense that it satisfies (10), it suffices to check that ψ : X → N is
αΓ∨π−1(Borel (Y ))-measurable. Indeed, because Yn =

⋃

g∈Γ g(An) for any x ∈ Xn

there exists g ∈ Γ and i ∈ {1, . . . , n} so that g(x) ∈ Bn,i. For such x we have

ψ(g(x)) = i so ψ−1
g(π(x))(i) = g(x) so

ψ(x) = ψ(g−1(g(x))) = ψ(g−1(ψ−1
g(π(x))(i))) = Πg−1,π(g·x)(i).

This implies the desirable measurability.
12



Now let us remove the additional assumption that Γ y (Y, ν) is aperiodic. Let
Γ y (Z, η) be a Bernoulli action. Then π : X → Y naturally induces a finite-
to-one factor map from Γ y (X × Z, µ× η) to Γ y (Y × Z, ν × η). Since Γ y

(Y × Z, ν × η) is aperiodic we can use the first part to conclude that

hΣΓ (X × Z, µ× η) ≤ hΣΓ (Y × Z, µ× η).

By [4, Theorem 8.1], because (Z, η) is a Bernoulli action

hΣΓ (X × Z, µ× η) = hΣΓ (X,µ) + hΣΓ (Z, η),

and
hΣΓ (Y × Z, µ× η) = hΣΓ (Y, µ) + hΣΓ (Z, η).

This proves (11) without assuming that Γ y (Y, ν) is aperiodic. �

Theorem 5.5. Suppose Γ is a sofic group with sofic approximation Σ that acts on
X and Y and that π : X → Y is a topologically prime extension.Then

(12) hΣΓ (X) ≤ hΣΓ (Y ).

In particular, topologically prime actions of sofic groups have non-positive sofic
entropy.

Proof. We obtain the proof essentially by repeating the proof of Theorem 5.1, with
the following modifications: Instead of applying the Abramov-Rokhlin entropy ad-
dition formula we apply the Abramov-Rokhlin sub-addition formula for sofic en-
tropy (Proposition 5.3). To deal with the case where (8) fails, we apply Proposition
5.4 above. �

We note that in general we cannot conclude an equality instead of the equality
(12) under the assumptions of Theorem 5.5. From the definition of sofic entropy, if
X y Γ admits no invariant probability measures then hΣΓ (X) = −∞. The following
is an example of a topologically prime action of the free group on two generators
that admits no invariant probability measure:

Example 5.6. Let T1 : X → X be a topologically prime homeomorphism that is
uniquely ergodic (for instance Kings’s example [22] on the cantor set X), and let
T2 : X → X be a homeomorphism that does not preserve the unique T1-invariant
measure. Consider the action on X of the free group generated by T1 and T2.
This is a topologically prime action because it has T1 as a subaction. It admits
no invariant probability measure, because the unique T1-invariant measure is not
T2-invariant.

Remark 5.7. Although finite-to-one extensions can never increase sofic entropy
they can certainly decrease it, as in the well known Ornstein-Weiss example of a
two-to-one factor map from the Bernoulli 2-shift to the Bernoulli 4-shift over the
free group.

Remark 5.8. Using the Abramov-Rokhlin sofic entropy sub-addition formula and
similar arguments as in the proof of Proposition 5.4 it is possible to prove the follow-
ing “atomless” refinement of the Abramov-Rokhlin entropy sub-addition formula
as follows: If µ = pµc+(1−p)µa is the representation of µ as a convex combination
of a continuous measure µc and a purely atomic measure µa and α is a measurable
partition of X such that

(α ∨ π−1(Borel (Y )))Γ ⊃ Borel (X) mod µc,
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then

hΣΓ (X,µ) ≤ hΣΓ (Y, ν) +Hµ(α | π−1(Borel(Y )).
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[17] B. Kamiński, A. Siemaszko, and J. Szymański. The determinism and the Kolmogorov prop-
erty in topological dynamics. Bull. Polish Acad. Sci. Math., 51(4):401–417, 2003.
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