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KOLMOGOROV COMPLEXITY AND ENTROPY OF AMENABLE

GROUP ACTIONS

ANDREI ALPEEV

Abstract. It was proved by Brudno that entropy and Kolmogorov complexity
for dynamical systems are tightly related. We generalize his results to the case
of arbitrary computable amenable group actions. Namely, for an ergodic shift-
action, the asymptotic Kolmogorov complexity of a typical point is equal to
the Kolmogorov-Sinai entropy of the action. For topological shift actions, the
asymptotic Komogorov complexity of every point is bounded from above by
the topological entropy, and there is a point attaining this bound.
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1. Introduction

The Kolmogorov complexity C(x) of a string x is, roughly speaking, the mini-
mal length of a computer program that outputs exactly string x. The definition of
Kolmogorov complexity formalizes the intuition that, while the decimal represen-

tation of the number 7777
77

is rather lengthy, it contains a very small amount of
information. Kolmogorov complexity could be defined for arbitrary finitary objects.
Namely, given a set of finitary objects together with an enumeration of this set by
natural numbers, we define the Kolmogorov complexity of an element of this set as
the Kolmogorov complexity of its index given by the enumeration.
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Consider the space AZ, where A is a finite set. We endow this space with the
product topology, assuming the discrete topology on A. The shift-action of group
Z on the space AZ is defined by the formula

(Six)(j) = x(i + j),

for x ∈ AZ and i, j ∈ G. A subshift is a closed S-invariant set X ⊂ AZ. For a point
x ∈ AZ we define its upper asymptotic complexity by the formula

AC(x) = lim sup
n→∞

C(pr[−n,n](x))

2n+ 1
.

The lower asymptotic complexity is defined in the similar way, but with the lower
limit.

In the works [Br74], [Br82], Brudno showed that the entropy of the aforemen-
tioned shift-action is intimately connected with the Kolmogorov complexity of its
points. Namely, he proved that the asymptotic complexity of any point in the sub-
shift is bounded from above by the topological entropy of the subshift, and that
there is a point whose asymptotic complexity equals the entropy of the subshift.
On the measure-theoretic side, he proved that, for an ergodic invariant measure
on a shift-action, almost every point has the asymptotic complexity equal to the
Kolmogorov-Sinai entropy of the measure-preserving action.

Later on, the topological part of these results was generalized to the case of a Z
d

action by Simpson in [Si15]. Alexander Shen brought my attention to the questions
in the latter work concerning generalization of Brudno’s results to the case of an
arbitrary amenable group.

In my 2013 diploma work [A13] I’ve managed to generalize some of Simpson’s
result. Let us remind some necessary definitions. Let G be a countable amenable
group. We remind that a countable group G is called amenable if it contains a
Følner sequence. A Følner sequence is a sequence (Fi) of finite subsets such that

lim
i→∞

|gFi \ Fi|

|Fi|
= 0

for every g ∈ G. A Følner sequence is called tempered if there is a constant K > 0
such that the inequality
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⋃

j<i

F−1
j Fi

∣

∣

∣

∣

∣

∣

≤ K|Fi|

holds for all i ∈ N. Note that from any Følner sequence, a tempered Følner sub-
sequence could be refined by a simple iterative procedure, see [L01, Proposition
1.4].

A countable group G is called computable if its elements are one-to-one enumer-
ated by natural numbers, and there is a computable function f of two arguments
such that for any two g, h ∈ G the index of gh is equal to f applied to the indices
of g and h.

We will say that a Følner sequence (Fi) is modest if C(Fi) = o(|Fi|) (the defi-
nition of the Kolmogorov complexity extends to any constructible class, see Sub-
section 2.1). Every computable amenable group admits a modest Følner sequence,
see Theorem 2.1. In addition, Theorem 3.1 from Section 3 presents a very natural
sufficient geometric criterion for a Følner sequence of a finitely-generated group to
be modest. Namely, if each element of the Følner sequence is edge-connected on the
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Cayley graph and contains the group identity element, then this Følner sequence
is modest.

For a finite set A consider the natural shift-action of G on the space AG. This
action is defined by the formula

(gx)(h) = x(hg)

for x ∈ AG and g, h ∈ G. We endow AG with the product topology, assuming the
discrete topology on A. A subshift in this context is any closed G-invariant set. For
a subshift X we denote htopG (X) the topological entropy of the action of G restricted
to X . For any subset F of G we denote prF the natural projection map from AG

to AF .
For any x ∈ AG, we denote

ACF (x) = lim sup
i→∞

C(prFi
(x))

|Fi|

the upper asympotic complexity of x relative to F , and

ACF (x) = lim inf
i→∞

C(prFi
(x))

|Fi|

the lower asympotic complexity of x relative to F .
The following theorem consitutes the main result of my master’s thesis [A13].

That work is written in Russian and has never been published, so I have decided
to incorporate its results into this paper.

Theorem 1.1. Let X ⊂ AG be a subshift over a computable amenable group G.
Let F be a modest Følner sequence. For every x ∈ X holds

ACF (x) ≤ htop
G (X).

If F is also tempered, then there is such a point y ∈ X that

ACF(y) = ACF (y) = htopG (X).

If in addition X has continuum cardinality, then there is a continuum of such points
y.

In Proposition 6.2 we derive the upper bound for the asymptotic complexity
in terms of the topological entropy. Proposition 6.1 states that there is a point
with the complexity greater of equal than the topological entropy, and that the last
assertion of the theorem above holds.

Afterward, Moriakov in the papers [Mo15a] and [Mo15b] independently consid-
ered the generalizations of Brudno’s results to the case of amenable groups having
so-called computable Følner monotiling. The latter means that the group has a
special Følner sequence each of whose elemements can tile the whole group, and
that this tiling can be generated by a computer program. This requirement seems
to be rather restrictive, in particular, it is not known whether all amenable groups
are monotileable. On the other hand, one can try to combine Moriakov’s approach
with the recent advances concerning tilings of amenable groups by finitely many
Følner sets (see [DHZ19] and also [Ceta18]). I do not pursue that path in this
paper.

In the current work I present a proof for the general case of measure-entropy
Brudno’s theorem:
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Theorem 1.2. Let G be a computable amenable group. Let F be a modest tempered
Følner sequence Let µ be an ergodic invariant measure on AG. Then for µ-a.e.
x ∈ AG we have

ACF (x) = ACF(x) = hG(A
G, µ),

where hG(A
G, µ) denotes the Kolmogorov-Sinai entropy of the action.

Proof naturally splits into proving the corresponding lower and upper bounds.
The lower bound for the complexity is established in the proposition 4.1. This
bound is basically an adaptation of the argument from [Si15].

The upper bound constitutes Proposition 5.2. I consider this bound to be the
main contribution of this paper. The proof has three main ingredients: a Shannon-
type frequency bound for asymptotic complexity; the monotonicity of asymptotic
complexity under factor maps between measure preserving systems; the recent
developements in generating partition theory due to Seward [Se19], Seward and
Tucker-Drob [SeTD]. The much weaker “mean” form of the bound was used by
Bernshteyn in [Be16].

The results of this paper have been announced in [A18].
It might be interesting to prove an “effective” analog of Theorem 1.2:

Problem 1.1. Does the statement of Theorem 1.2 holds for a Martin-Löf random
point?

Acknowledgements. Research is supported by the Russian Science Foundation
grant No14-21-00035. I would like to thank Alexander Shen for suggestion to work
on generalizations of Brudno’s results, and for helpful discussions. Discussions with
Pavel Galashin were instrumental in proving Theorem 3.1. I’d like to thank Sergey
Kryzhevich for his comments on my diploma work [A13]; results from that work
constitute a substantial part of this paper. I thank Pierre Guillon for the comments
on the manuscript.

2. Preliminaries

We will use the symbol “⋐” for “a finite subset”.

2.1. Computability and Kolmogorov complexity. In the sequel we may as-
sume without loss of generality that our notion of computability is augmented with
a fixed oracle. This might change the notions relying on the notion of computabli-
tity, but all the properties and arguments used in this paper remain true after the
relativization. Of course, the notions used in the statements of the theorems should
be adjusted accordingly.

Denote 2∗ the set of all finite binary strings (the empty one included).
For x ∈ 2∗ we denote |x| the length of x. Let f be a partial (i.e. not necessarily

everywhere defined) computable function 2∗ → 2∗. For x ∈ 2∗ we denote Cf (x)
the smallest |y| such that f(y) = x (Cf (x) = +∞ if there are no such y’s). By the
Kolmogorov-Solomonoff theorem (see [LV97, Theorem 2.1.1] or [SUV, Theorem 1]),
there is an “optimal” computable function f , such that for any other computable
f ′ there is a constant K for that inequality

(1) Cf (x) < Cf ′(x) +K

holds for any x ∈ 2∗. We fix any f optimal in this sense. The Kolmogorov complexity
of a string x is defined as Cf (x) and denoted by C(x). It is easy to see that for any
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natural k there are at most 2k words x ∈ 2∗ satusfying the bound C(x) < k. An
immediate consequence of the definition is that for any partial computable function
t there is a constant K such that

(2) C(t(x)) < C(x) +K

for any x ∈ 2∗. Indeed, take f ′ = t ◦ f in the Inequality 1.
Enumeration is the usual device for extension of the notion of computability

from the basic class of natural numbers (or binary strings). In the literature, for
each new class of combinatorial objects (say, finite graphs or some colored finite
structure) the enumeration is usually given in an ad hoc manner. While not causing
much trouble in most cases, this approch seems inappropriate to me. Consider the
following example. Let’s say we want enumerate the class of finite graphs with
vertices uniquely labeled by natural numbers from 1 to the vertex count. One of
generic ways is to consider string of the form: number of vertices + number of edges
+ list of edges (some sort of padding should be introduced in order to distiguish
these parts), then we lexicogrpaphically enumerate all the “correct” discriptions,
leaving for each graph only the lexicograpically first one. On the other hand, we can
introduce the following kind of enumeration. Let B be a non-enumberable and non-
co-enumerable set of natural numbers. Consider such an enumertation of graphs
that odd indices would correspond to graphs whose vertex number is in B, and even
- whose vertex numbers are not in B. Intuitively, it seems like the first enumeration
is “natural”, while the second is not. In fact, this distinction would become very
apparent if we would like to prove some computability statements for this class
of labeled graphs. The distinction described is similar to that between Gödel and
non-Gödel enumerations of computable functions. The purpose of the following is
to sketch the way to formally separate natural from non-natural enumerations for
some classes of objects.

Let us give an inductive definition of a constructible class and a natural enumer-
ation of a constructible class. The set of natural numbers is a constructible class,
and any computable bijection from it to any its decidable subset is a natural enu-
meration. Any finite set is a constructible class and any bijection from it to a subset
of natural numbers is a natural enumeration. Let U0 be a countable set together
with a finite collection of constructible classes U1, . . . , Um and a finite collection
(fi) of functions fi : Uki

1

× . . . × Uki
ni
→ U0 (called construction functions), with

kij ∈ 0, . . . ,m and arities ni ∈ N0 (0-ary functions are allowed, we will call them
constants). We will say that this forms a constructible class if there exists a bijec-
tion q0 from U0 to a decidable subset of natural numbers such that the following
hold:

(1) for some collection of natural enumerations q1, . . . qm for respective con-
structible classes, the functions q0 ◦ fi are computable (after identifying
each U1, . . . , Um with a decidable subset of natuaral number via the respec-
tive enumeration);

(2) the set U0 is the minimal set closed under construction functions (fi), i.e.
for any proper subset U ′

0 of U0 there is a construction function fi and
arguments uj ∈ Uki

j
such that uj ∈ U ′

0 for each j with kij = 0, and that

fi(u
1, . . . , uni) /∈ U ′

0.

We say that any q0 satisfying these requirements is a natural enumeration for
this constructible class.
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Note that the second clause means that any element of the constructible class
could be obtained by an expression that involve only contriction functions and
elements from U1, . . . , Um.

It is easy to prove inductively that all natural enumerations are computably
equivalent:

Proposition 2.1. Let U be a constructible class and q, q′ be any two natural enu-
merations. Then the function q′ ◦ q−1 is computable. Also, in the clause 1 of the
definition above, one can substitute “some collection of natural enumerations” with
“any collection of natural enumerations”.

Proof. The base of the induction (the constructible class of natural numbers and
finite constructible classes) is trivial. Now let U0 be a construstible class whose
definition relies on constructible classes U1, . . . , Um. By induction, we assume that
the proposition holds for these. Note that the last assertion of the proposition
holds trivially for U0 since the first assertion holds for U1, . . . , Um. In order to
verify the first assertion for U0, it is enough to show that the graph of q′ ◦ q−1 is a
computably enumerable set. We fix a collection of natural enumeraitions q1, . . . , qm
for U1, . . . , Um respectively. Since the second assertion of the proposition holds for
U0, compositions q ◦ fi are computable functions if we identify Ui, i = 1, . . . ,m
with subsets of the natural numbers via qi’s and U0 via q. The same holds for q′

instead of q. So now we want to know which q′-indices correspond to q-indices. To
do so we apply construction function in all possible ways, using only those values
from U0 where we know the correspondence of q and q′ indices. In this way we will
obtain new values of corresponding q and q′ indices. The fact that U0 is generated
by the construction functions implies that the procedure described will eventually
give the corresponding q and q′ indices for all elements of U0. �

Instantly we have the following:

Corollary 2.1. Let U0, . . . , Um be a finite collection of constructible classes. If
f : U1 × . . . × Um → U0 is a function that is computable after identifying each Ui

with a subset of natural numbers via some natural enumeration, then this function
will remain computable after identifying each Ui with a subset of natural numbers
via any natural enumeration.

Let U0, . . . , Um be a collection of constructible classes. We will say that a function
f : U1 × . . . × Um → U0 is computable if it is computable after identifying each
constructible class via some (=any) natural enumeration.

In practical situations it is hard to find unique natural collection of construction
functions. The next corollary, that follows directly from the previous one, resolves
this issue.

Corollary 2.2. If two constructible classes share the same underlying set U , and
the collection of construction function of the first one is a subset of the collection of
construction function of the second one, then these two constructible classes have
the same set of natural enumerations.

Let us proceed with some examples.
For any finite set A, the set A∗ of all finite strings is a constructible class.

For the set of construction functions we can take a constant f0 for the empty
string, and a function f1 : A∗ × A → A∗ which appends a symbol to the string.
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For a natural enumeration we can first order all the strings by their length and
then lexicographically if the lengths ar equal. In the later examples we leave the
construction of a natural enumeration as an exercise.

A product of any two constructible classes U1 and U2 could be naturally consid-
ered a constructible class. Indeed, fix a constant f0 for an arbitrary element w from
U1 × U2. Fix two additional construction functions f1 : (U1 × U2)× U1 → U1 × U2

such that f1((u1, u2), u
′
1) = (u′1, u2), and f2 : (U1 × U2)× U2 → U1 × U2 such that

f2((u1, u2), u
′
2) = (u1, u

′
2). In fact, any finite product of constructible classes could

be considered a constructible class in a natural fashion.
The set Fin(U) of all finite subsets of a contructible class U could be naturally

considered a constructible class. For a set of construction functions we take a
constant f0 returning the empty subset, and the function f1 : Fin(U)×U → Fin(U)
defined by f1(w, u) = w ∪ {u}.

For any constructible class U and any finite set A, the set of partial maps with
finite domains A⋐U could be considered a constructible class. For the construction
functions we take a constant f0 returning the trivial partial map with the empty
domain, and a function f1 : A⋐U ×U ×A→ A⋐U such that (f1(w, u, a))(v) = w(v)
if v 6= u and (f1(w, u, a))(v) = a otherwise (in other words, we either extend the
domain and define the new function on u to return a, or override the value of the
old function on u by a).

We identify 2∗ with the set N by some natural enumeration. This way, we may
define the Kolmogorov complexity as a function on the set of natural numbers.
Note that this definition changes only up to an O(1) summand if we change the
natural enumeration, due to monotonicity of the Kolmogorov complexity under
computable functions, Inequality 2, and computational equivalence of any two nat-
ural enumerations, Proposition 2.1. In the same vein, for any constructible class
U we may fix a natural enumeration q and define the Kolmogorov complexity for
u ∈ U as C(q(u)). Again, the complexity changes only up to an O(1) summand if
we change the natural enumeration.

One important example is complexity of tuples. Let U1, . . . Uk be constructible
classes. We introduce a special notation C(u1, . . . , uk) = C((u1, . . . , uk)).

Let us sum up some important properties of the Kolmogorov complexity.

Proposition 2.2. The following holds for the Kolmogorov complexity.

(1) For any x ∈ 2∗ we have C(x) ≤ |x| + O(1). For any natural number n
we have C(n) ≤ logn + O(1). For any finite set A that have at least two
elements, we have C(w) ≤ |w| log|A|+O(1), for each w ∈ A∗.

(2) For each constructible class U and k ∈ N there are no more than 2k of such
x ∈ U that C(x) < k.

(3) Let U1, U2 be constructible classes and let f : U1 → U2 be a computable
function. There is a constant K such that C(f(x)) < C(x) + K for any
x ∈ U1.

(4) Let U1, . . . , Um be a finite collection of constructible classes. There is a
constant K such that

C(u1, . . . , uk) ≤C(u1) + . . .+ C(uk)+

2 log(C(u1)) + . . .+ 2 log(C(uk−1)) +K,

for any (u1, . . . , uk) ∈ U1 × . . . Uk.
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(5) For any constructible class U there is a constant K such that for any finite
subset T of U and any u ∈ T we have

C(u) ≤ C(T ) + 2 log(C(T )) + log|T |+K.

(6) Let U be a constructible class, and f be a computable function from 2∗ to
U . Then C(f(x)) ≤ |x|+O(1) for any x ∈ 2∗. If t is a computable function
function from N to U , then C(t(i)) ≤ log i+O(1) for any i ∈ N.

Proof. The first one easily follows from the definition of the Kolmogorov complex-
ity via the comparison with the trivial function f ′(x) = x. The variant for the
natural numbers follows by considering the binary representation. The statement
for the strings over finite alphabets follows easily by considering the lexicographical
enumeration.

For the second one, consider the optimal function f from the definition of the
Kolmogorov complexity. Oviously, it assumes no more than 2k values on the strings
of length less than k. This implies the desired.

The third one is an easy consequence of Inequality 2.
We will prove the fourth one for binary strings. this would imply the statement

in general. Let U1, . . . , uk be binary strings. Let f : 2∗ → 2∗ be the optimal func-
tion from the definition of the Kolmogorov complexity. Let y1, . . . , yk be shortest
preimages of respective u1, . . . , uk. Let t be a program that expects its input in
the following form. First the binary representation of the length |u1| with each
digit doubled, then the piece “01”, then string y1, then the same goes for each yi,
i = 2...k − 1, and in the end we just add string yk. Program t will read these,
parse the strings y1, . . . , yk, apply function f to each, and apply a fixed natural
enumeration function, thus recovering the index of the tuple (u1, . . . , uk). It is now
easy to see that

Ct(u1, . . . , uk) ≤C(u1) + . . .+ C(uk)+

2 log(C(u1)) + . . .+ 2 log(C(uk−1)) + 2(k − 1).

Applying the definition of the Kolmogorov complexity, we obtain the desired in-
equality.

For the fifth one we again assume that our constructible class is the set binary
strings. Let t be a function from Fin(2∗) × N to 2∗ such that t(T, i) is the i-th in
the lexicographical order element of T ⋐ 2∗, if i < |T |, otherwise it is undefined.
Note that for any finite T and its element u there is such i < |T | that t(T, i) = u.
Using previous properties, we observe that

C(u) = C(t(T, i)) +O(1) ≤ C(T, i) +O(1) ≤ C(T ) + 2 log(C(T )) + log i+O(1).

This implies the desired.
The sixth property is a consequence of properties 1 and 3.

�

We refer the reader to books [LV97] and [SUV] for additional details on the
Kolmogorov complexity.

2.2. Computable amenable groups. Let G be a countable group. A sequence
F = (Fi) of finite subsets of group G, such that

lim
i→∞

|gFi \ Fi|

|Fi|
= 0
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holds for every g ∈ G, is called a Følner sequence for group G. A countable group
is called an amenable group if it has a Følner sequence.

A Følner sequence is called tempered if there is a constant K > 0 such that for
all i the following inequality is satisfied:

(3)

∣

∣

∣

∣

∣

∣

⋃

j<i

F−1
j Fi

∣

∣

∣

∣

∣

∣

≤ K|Fi|.

We remind that from any Følner sequence, a tempered Følner subsequence could
be refined (see [L01, Proposition 1.4]).

Let G be a countable group. We will say that G is a computable group if the set of
its elements is the set of natural numbers, and the composition function (g, h) 7→ gh
is computable. We may asssume also that 0 is the identity element. We sometimes
will use the order inherited from the set of natural numbers for computable groups.
Note that a finitely-generated group is computable whenever the word problem for
the group is decidable. A computable amenable group is simply a computable group
which is amenable. We can define the Kolmogorov complexity of a finite subset F of
G, since finite subsets form a constructible class (the class of finite subsets of natural
numbers). We will say that a Følner sequence (Fi) of a computable amenable group
is modest if the following asymptotic bound holds:

C(Fi) = o(|Fi|).

This definition was given in my work [A12], where the following result was also
proved.

Theorem 2.1. Every computable amenable group has a modest Følner sequence.

Sketch of proof. Let us fix an enumeration of finite subset of G. For i let Fi be
the first subset such that |Fi| > i and that |gFi \ Fi|< |Fi|/(i + 1) for every g < i
(the order is the order of natural numbers). It is easy to see that this is a Følner
sequence. It also follows from Proposition 2.2, Property 6 that C(Fi) ≤ log i+O(1)
(note that the map i 7→ Fi is computable). So C(Fi) = o(|Fi|). �

In Section 3 we will introduce a useful geometric criterion for a Følner sequence
to be modest, which works in a lot of situations.

2.3. Actions and ergodic theory. We refer the reader to books [Gl03] and
[EW11] for the introduction to ergodic theory. Results concerning the ergodic
theory of amenable groups could be found in [Oll85], [OW87], [L01], [KL16].

Let G be a countable group. We will denote by 1G the identity element of the
group. Let A be a finite alphabet. The shift-action of group G on the space AG is
defined by

(gx)(h) = x(hg),

for every x ∈ AG and g, h ∈ G. We endow the space AG with the product topology.
It is easy to note that the group G acts by homeomorphisms in the shift action
which we defined. A subshift is any closed invariant subset of AG. We will also
use term subshift for the action given by restricting the action of G to the closed
invariant subset X . For any F ⋐ G we denote by prF the natural projection map
from AG to AF .

Consider two actions of a group G on sets X and Y . A map π : X → Y is said
to be equivariant if π(gx) = gπ(x) for all g ∈ G and x ∈ X .
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We denote A⋐G the set of all partial maps from G to A with finite domains. We
denote supp(t) the domain of t for t ∈ A⋐G. We denote by cont(t) the word

(t(g1), . . . , t(g|supp(t)|)),

from A|supp(t)|, where supp(t) = {g1, . . . , g|supp(t)|}, and gi’s are listed in the in-
creasing order.

Let G be a countable group. By an action of G on a standard probability space
(X,µ) we will always mean a measurable and measure-preserving action. A measure
preserving action is ergodic if all invariant sets have measure 0 or 1. An invariant
measure is ergodic if the corresponding action is ergodic.

Suppose a countable group G acts on two standard probability spaces (X,µ)
and (Y, ν). A measure-preserving map π : Y → X is said to be a factor map if
g(π(y)) = π(gy) for ν-a.e. y ∈ Y . It is not hard to see that there is a full-measure
G-invariant subset Y ′ of T such that the restriction if π to X ′ is an equivariant
map. A factor map is called an isomorphism if it is one-to-one on a set of full
measure.

Suppose a countable group G acts on a standard probability space (X,µ). Let
π̄ : X → A be a measurable map to a finite set A. We can extend this map to
π : X → AG by the equality

(π(x))(g) = π̄(gx).

The resulting map is equivariant. In fact, any measurable equivariant mapX → AG

could be obtained in such a way. We will call the map π̄ the generator map for the
equivariant map π. Consider an equivariant map π : BG → AG between two shift-
actions. We will say that this map is a cellular map if there is a finite subsetM of G
called a memory set and a function τ : BM → A such that (π(y))(1G) = τ(prM (y))
for every y ∈ BG. In fact, by the famous Curtis-Hedlund-Lyndon theorem, a map
fromAG to BG is a cellular map iff it is equivariant and continuous (see e.g. [CSC10,
Theorem 1.8.1]).

Importance of cellular map for our presentation stems from a fact that any factor
map can be approximated by a cellular map.

Proposition 2.3. Let ν be a Borel invariant probability measure on BG. Let
π : BG → AG be an equivariant map. For any ε > 0 there is a cellular map
πε : B

G → AG such that ν({y ∈ BG : (π(y))(1G) 6= (πε(y))(1G)}) < ε.

Proof. Consider the map π̄ : BG → A defined as π̄(y) = (π(y))(1G). For each
a ∈ A denote Wa the preimage of a under the map π̄. By the Borel regularity and
since the clopen sets form a basis for the topology on BG, we can find for each
a ∈ A such a clopen set W ′′

a that ν(Wa∆W
′′
a ) < ε/(100|A|)2. Let us now order

elements of A in some way: A = {a1, . . . , an}. Next we put W
′
ai

=W ′′
ai
\
⋃

j<iW
′′
aj
,

for i < n, and W ′
an

= BG \
⋃

i<nW
′
ai

= BG \
⋃

i<nW
′′
ai

. It is now clear that all

W ′
ai

are clopen, pairwise disjoint, and their union is the whole space BG. We also
note that ν(W ′

ai
∆Wai

) < ε/(2|A|) for each i = 1, . . . , n. We now define a map π̄ε
by π̄ε(y) = ai, if y ∈W

′
ai
, and induce a cellular map πε from it. �

Let X be a standard Borel space or standard probability space. A partition
of X is a finite or countable collection of measurable subsets of X whose union
is the whole set. For two partitions α and β we denote α ∨ β the partition
{U ∩ V, where U ∈ α, V ∈ β, U ∩ V 6= ∅}.
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Consider an action of a countable group G on a standard probability space
(X,µ). For a partition α of X and an element g ∈ G we denote αg the partition
{g−1U, where U ∈ α}. For a finite subset F of G, we denote αF the partition
∨

g∈F α
g. Partition α is said to be generating if the smallest σ-subalgebra containing

αg for each g ∈ G is (modulo sets of mesure 0) the algebra of all measurable subsets
of X . The following condition is well-known to be equivalent: there is a subset
X ′ ⊂ X of full measure such that for every pair x1, x2 ∈ X

′ with x1 6= x2 there is
an element g ∈ G such that gx1 and gx2 belong to different pieces of α (see e.g.
[Se15, Lemma 2.1]).

A probability vector is a countable or finite sequence of non-negative numbers
whose sum is 1. Let (pi) be a probability vector. Its Shannon entropy is defined as

−
∑

i

pi log(pi),

with the convention 0 log 0 = 0, and denoted byH(p). Any partition of a probability
space defines a probability vector. For a partition α we denote H(α) the entropy
of the corresponding probability vector.

Let a countable amenable group G act on a standard probability space (X,µ),
let α be a partition of finite Shannon entropy. Let (Fi) be a Følner sequence for G.
We denote

hG(α,X, µ) = lim
i→∞

H(αFi)

|Fi|
.

It is well known that this limit does not depend on the choice of the Følner sequence
(see [KL16, Chapter 9.3, remarks before Definition 9.3]). The Kolmogorov-Sinai
entropy hG(X,µ) of the action is defined by the formula

sup
H(α)<∞

hG(α,X, µ),

the supremum is taken along all the partitions with finite entropy. By the Kolmogorov-
Sinai theorem, we have

hG(X,µ) = hG(α,X, µ),

for any finite generating partition α, see [KL16, Theorem 9.8].
Consider the shift-action of a countable group G on AG. Preimages of elements

of A under the map x 7→ x(e) from AG to A constitute a partition. This partition
is called the canonical alphabet generating partition.

Let a countable group G act on a standard probability space (X,µ). Suppose
ψ̄ is a measurable map from X to a finite set A. Let α′ be the corresponding
partition of X (namely, the partition consisting of preimages under ψ̄ of elements
in A). Suppose α′ is a generating partition. As we already noticed, the extended
map π : X → AG is a bijection on a subset of full measure. We endow now AG

with the push-forward measure ν = ψ(µ). It follows that ψ is an isomorphism of
G-actions. Let π be an inverse of ψ on a conull set, we can assume that this map
is Borel (ψ is a Borel map on a Borel set of full measure, an inverse of a Borel
one-to-one map is a Borel map, see [Ke95, Corollary 15.2]). So π is an isomorphism
from (AG, ν) to (X,µ). This map is also an isomorphism of actions. Alltogether we
constructed a symbolic representation, corresponding to partition α′, of the action
of G on (X,µ).

An action of a countable group on a standard probability space is called essen-
tially free if it is free on the orbit of almost every point.
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The following generating partition result was proved by Seward, [Se19, Corollary
1.3] (see also [SeTD, Corollary 2.9]):

Theorem 2.2. Consider an essentially free ergodic action of a countable amenable
group G on a standard probability space (X,µ). If hG(X,µ) < +∞, then for every
ε > 0 there is a finite alphabet A and a symbolic representation of this action by
the shift-action on (AG, ν) such that the canonical alphabet generating partition has
entropy smaller than hG(X,µ) + ε.

2.4. Topological entropy. For a compact metric space (X, l) we denote Nε(X, l)
the size of a mininmal ε-spanning net.

Let X be a compact metrizable space. Let G be a countable amenable group
acting by homeomorphisms on X . Let us fix a compatible metric l on X . Suppose
S is a finite subset of G; we denote

lS(x, y) = sup
g∈S

l(gx, gy),

for x, y ∈ X . Let us fix a Følner sequence (Fi) for G. Topological entropy of the
action is defined as

sup
ε>0

lim sup
i→∞

logNε(X, l
Fi)

|Fi|

and denoted by htopG (X). It is well known that this does not depend on the choice
of the compatible metric and Følner sequence (see [KL16, Theorem 9.39]).

For a subshift X ⊂ AG there is the following equivalent definition of the topo-
logical entropy (see [KL16, Example 9.4]):

htopG (X) = lim
i→∞

log|prFi
(X)|

|Fi|
.

We will need the following implication of the variational principle.

Theorem 2.3. Let A be a finite set and G be an amenable group, let X ⊂ AG be
a subshift. There is such an invariant Borel probability measure µ on X that

hG(X,µ) = htopG (X).

Proof. This follows from the variational principle together with the upper-semicontinuity
of measure entropy as a function on the set of invariant measures for an expansive
dynamical system. See Chapter 5 from [Oll85]. �

2.5. Asymptotic complexity. Let A be a finite alphabet. Consider the shift-
action of a computable amenable group G on AG. Let F = (Fi) be a Følner
sequence. As we discussed earlier, all partial maps from G to A with finite domains
form naturally a constructible class. The upper asymptotic complexity of a point
x ∈ AG relative to F is defined as

lim sup
i→∞

C(prFi
(x))

|Fi|

and denoted by ACF (x). The lower asymptotic complexity of a point x ∈ AG

relative to F is defined as

lim inf
i→∞

C(prFi
(x))

|Fi|

and denoted by ACF(x).
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Proposition 2.4. If F = (Fi) is a modest Følner sequence, then

ACF(x) = lim sup
i→∞

C(cont(prFi
(x)))

|Fi|

for every x ∈ AG; analogous equality holds for the lower asymptotic complexity.

Proof. Note that cont : A⋐G → A∗ is a computable function, so

C(cont(prFi
(x)))

|Fi|
≤
C(prFi

(x)) +O(1)

|Fi|
,

which implies that

lim sup
i→∞

C(cont(prFi
(x)))

|Fi|
≤ lim sup

i→∞

C(prFi
(x))

|Fi|
.

Now let q : Fin(G) × A∗ → A⋐G be a partial computable function such that
t = q(dom t, cont t) for each t ∈ A⋐G (it constructs a partial map from a finite
subset and a string of matching size). It is easy to note that

C(prFi
(x))

|Fi|
=
C(q(Fi, cont(prFi

(x))))

|Fi|

≤
C(Fi) + C(cont(prFi

(x))) + 2 logC(Fi) +O(1)

|Fi|

=
o(|Fi|) + C(cont(prFi

(x))) + 2 log o(|Fi|) +O(1)

|Fi|
.

Thus we have

lim sup
i→∞

C(prFi
(x))

|Fi|
≤ lim sup

i→∞

C(cont(prFi
(x)))

|Fi|
.

�

3. Reflections concerning modest Følner sequences

We remind that a Følner sequence F = (Fi) is called modest if C(Fi) = o(|Fi|).
The following proposition will be needed to apply the Borel-Cantelli lemma in

the proof of Proposition 4.1.

Proposition 3.1. Let (Fi) be a modest Følner sequence in a computable amenable
group G. If Fi 6= Fj for every pair (i, j) with i 6= j, then for every ε > 0 the
following serie converges:

∑

i∈N

2−ε|Fi|.

Proof. Throwing away a finite initial segment of the Følner sequence, we may as-
sume that C(Fi) < ε/2 · |Fi| for every i. We rearrange the sum:

∑

k∈N

2−εk|{i : |Fi| = k}|.

For each Fi with |Fi| = k we have C(Fi) < εk/2; so for each k we have |{i : |Fi| =
k}| ≤ 2εk/2. This means that the sum is bounded by the geometric series:

∑

k∈N

2−εk/2.
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�

The next theorem provides a geometric criterion for a Følner sequence to be
modest. We note that it is not used in the sequel, but shows that main results of
this paper are applicable in a wide variety of situations.

Theorem 3.1. Suppose G is a computable amenable group which is finitely gener-
ated. Let us fix a finite symmetric generating set S. This defines the Cayley graph
structure on G. Let (Fi) be a Følner sequence. If each Fi is an edge-connected
subset of the Cayley graph and contains the group identity, then (Fi) is a modest
Følner sequence.

Proof. Algorithm 1 (see Appendix A) takes a finite connected subset T which con-
tains 1G and reversibly encodes it as a binary string consisting of |T | 1’s and |ST \T |
0’s. That algorithm is based on the standard depth-first search algorithm for graphs
(see [CLRS], Chapter 22.3).

I would like to note that the output string of Algorithm 1 uniquelly determines
the input set. Algorithm 2 (Appendix A) decodes the set from the string. There
B(1G, n) stands for the ball of radius n in Cayley graph around the group identity.
If we apply the encoding to an element Fi of the Følner sequence, we get the binary
string of length (1+oi(1))|Fi|; this string contains a negligible amount of 0’s; hence,
by Lemma 5.1, we have C(Fi) = o(|Fi|).

�

4. Measure entropy; lower bound for complexity

Let α be a partition of a standard probability space (X,µ). For x ∈ X denote
α(x) the element of α that contains x. We will need the following generalization of
the Shannon-McMillan-Breiman theorem due to Lindenstrauss [L01]:

Theorem 4.1. Consider an ergodic action of a countable amenable group G on a
standard probability space (X,µ). Let α be a partition of finite Shannon enropy.
Let (Fi) be a tempered Følner sequence. For µ-a.e. x ∈ X holds

lim
i→∞

− logµ(αFi(x))

|Fi|
= hG(α,X, µ).

Proposition 4.1. Let µ be an ergodic invariant measure for the shift-action of a
computable amenable group G on AG. If F = (Fi) is a modest tempered Følner
sequence, then for µ-a.e. x ∈ AG we have

ACF(x) ≥ hG(A
G, µ).

Proof. Denote h = hG(A
G, µ). Without loss of generality we may assume that the

Følner sequence does not have repeating elements. Let α be the canonical alphabet
generating partition. Let ε, δ > 0. By the theorem above, there is a subset R ⊂ AG

with µ(R) > 1− δ and a number N such that for each x ∈ R and i > N we have

logµ(αFi(x)) ≤ −(h− ε)|Fi|.

In order to prove the proposition it is enough to show that for µ-a.e. x ∈ R we
have

ACF(x) ≥ h− 2ε.
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For each i > N , denote Si the subset of all x ∈ R such that C(prFi
(x)) < (h −

2ε)|Fi|, these sets are measurable since they are unions of cylinder sets. By the
Borel-Cantelli lemma, it suffices to show that

∑

i>N

µ(Si) < +∞.

We proceed by showing that this is the case. For each i > N there are at most
2(h−2ε)|Fi| such t ∈ AFi that C(t) < (h− 2ε)|Fi|. This implies that

µ(Si) ≤ 2(h−2ε)|Fi| · 2−(h−ε)|Fi| = 2−ε|Fi|.

So the desired convergence holds due to Proposition 3.1.
�

5. Measure entropy; upper bound for complexity

Let µ be an ergodic measure on AG; we will show that (under some additional
requirements) the upper asymptotic complexity of µ-a.e. point is bounded from
above by the Kolmogorov-Sinai entropy. Here is the general outline of the proof.
We first prove a “trivial” bound: for an ergodic invariant measure on a shift-action,
for almost every point the asymptocic complexity is bounded from above by the
Shannon entropy of the cannonical alphabet generating partition. We then show
that the asympotic complexity is essentially monotone relative to factor maps. This
is done first for cellular maps (which is immediate); then we extend this to any
factor-map by means of an approximation argument. Theorem 2.2 of Seward and
Tucker-Drob implies that the desired bound on the complexity holds if the action
is essentially free. We relieve the freeness assumption by taking a product with a
Bernoulli action of small entropy.

We will use the following ergodic theorem due to Lindenstrauss([L01]:

Theorem 5.1. Let G be a countable amenable group acting ergodically on a stan-
dard probability space (X,µ). Let f be an L1 function on (X,µ). If (Fi) is a
tempered Følner sequence, then

lim
i→∞

1

|Fi|

∑

g∈Fi

f(gx) = E(X,µ)f,

for µ-a.e. x ∈ X.

Our first goal is to establish a “trivial” bound in Lemma 5.2.
Let A be a finite alphabet. For a word w ∈ An we denote p(w) the probability

vector for occurence rates of letters from A in w.
The following is Lemma 146 from the book [SUV].

Lemma 5.1. For every w ∈ A∗ holds

C(w) ≤ |w|(H(p(w)) + o|w|(1)).

Lemma 5.2. Consider the shift-action of a computable amenable group G on AG

for a finite set A. Let µ be an ergodic invariant measure. Let α be the canonical
alphabet generating partition. If F = (Fi) is a tempered Følner sequence, then

lim sup
i→∞

C(cont(prFi
(x)))

|Fi|
≤ H(α),
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for µ-a.e. x ∈ X. If in addition F is modest, then

ACF (x) ≤ H(α),

for µ-a.e. x ∈ X.

Proof. I claim that for µ-a.e. x ∈ AG, we have that p(cont(prFi
(x))) tends to the

probability vector of α. Indeed, denote Wa for a ∈ A the set of all x ∈ AG with
x(1G) = a. The occurence rate p(prFi

(x))(a) of a in prFi
is equal to

1

|Fi|

∑

g∈Fi

IWa
(gx),

where IWa
is the indicator function of set Wa. The claim follows from the Linden-

strauss ergodic theorem applied to function IWa
.

The first assertion is now a consequence of the previous lemma. The second one
follows easily now from Proposition 2.4. �

Next, we would like to prove that asymptotic complexity does not increase under
factor-maps. This is easy to establish for cellular maps. Then we observe that two
colorings from AG which are mostly the same (in the sense of Hamming distance),
have close asymptotic complexities. We then note that any equivariant map can be
approximated by a cellular map. The desired monotonicity follows.

Let w′ and w′′ be two words in A∗ of the same length. The Hamming distance
between w′ and w′′ is defined as

|i : w′(i) 6= w′′(i)|

|w′|
,

and denoted by DH(w′, w′′).
The lemma below shows that two words have close complexity rates, given that

these words are close in the Hamming metric.

Lemma 5.3. For two words w′,w′′ in A∗ of the same length n the following holds:

|C(w′)−C(w′′)| ≤ n
(

H(DH(w′, w′′), 1− DH(w′, w′′)) + DH(w′, w′′) log|A|+ on(1)
)

.

Proof. In order to recoverw′′ from w′ it is enough to provide the word u from {0, 1}n

that will encode the places where w′ and w′′ differ, and the word v from AnDH(w′,w′′)

that will encode the letters to substitude: it will have 1’s in the places where w′

and w′′ differ, and 0’ elsewhere. The first word contains exactly n · DH(w′, w′′) of
1’s. So its complexity is bounded by

n ·H(DH(w′, w′′), 1−DH(w′, w′′)) + o(n),

by Lemma 5.2. The second has complexity bounded by

nDH(w′, w′′) log|A|+O(1),

by Statement 1 from Propostition 5.1.
Let q be a computable function that takes word w′, the difference-encoding string

u, and the string of substitute letters v, and outputs w′′. We can see that

C(w′′) = C(q(w′, u, v)) ≤ C(w′, u, v) +O(1)

≤ C(w′) + 2 logC(w′) + C(u) + 2 logC(u) + C(v)

= C(w′) + C(u) + C(v) + o(n)

≤ C(w′) + n ·H(DH(w′, w′′), 1−DH(w′, w′′)) + n ·DH(w′, w′′) + on(n).
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We used monotonicity of the Kolmogorov complexity under computable maps and
then the bound for the Kolmogorov complexity of a tuple, see Proposition 2.2. We
can obtain a similar upper bound for C(w′) in terms of C(w′′). �

For two elements t1, t2 ∈ A
⋐G with supp(t1) = supp(t2), we define the Hamming

distance between them by

|{g ∈ supp(t1), t1(g) 6= t2(g)}|

|supp(t1)|
,

and denote it as DH(t1, t2).
Let F = (Fi) be a Følner sequence. For two elements x1, x2 ∈ A

G, we define the
asymptotic Hamming distance between them relative to F by the formula

lim sup
i→∞

DH(prFi
(x1), prFi

(x2)),

and denote it as dHF(x1, x2).

Lemma 5.4. Let A and B be finite sets. Suppose π′ and π′′ are two measurable
equivariant maps from BG to AG. Suppose µ is an ergodic invariant measure on
BG. Let W be the set of all such y ∈ BG that (π′(y))(1G) 6= (π′′(y))(1G), where
1G stands for the identity element in group G. Let F = (Fi) be a tempered Følner
sequence. The for µ-a.e. y ∈ BG holds

dHF (π
′(y), π′′(y)) = µ(W ).

Proof. It is easy to note that (π′(y))(g) 6= (π′′(y))(g) is equivalent to (gπ′(y))(1G) 6=
(gπ′′(y))(1G), which in turn is equivalent to (π′(gy))(1G) 6= (π′′(gy))(1G). The
latter is equivalent to gy ∈ W . Now the statement follows from Lindenstrauss’
ergodic theorem (Theorem 5.1) applied to the indicator function of set W . �

Lemma 5.5. In the setting of the previous lemma assume F = (Fi) is a modest
Følner sequence. For µ-a.e. y ∈ BG we have

|ACF (π
′(y))−ACF(π

′′(y))| ≤ H(µ(W ), 1− µ(W )) + µ(W ) log|A|.

Proof. Since the Følner sequence is modest, by Proposition 2.4, it is enough to
prove that

lim sup
i→∞

∣

∣C(cont(prFi
(π′(y))))− C(cont(prFi

(π′′(y))))
∣

∣

|Fi|

≤ H(µ(W ), 1− µ(W )) + µ(W ) log|A|.

By Lemma 5.3, we have

∣

∣C(cont(prFi
(π′(y))))− C(cont(prFi

(π′′(y))))
∣

∣

≤ |Fi| ·H
(

DH
(

prFi
(π′(y)), prFi

(π′′(y))
)

, 1−DH
(

prFi
(π′(y)), prFi

(π′′(y))
)

)

+DH
(

prFi
(π′(y)), prFi

(π′′(y))
)

log|A|+ o(|Fi|).

Next, we divide by |Fi| and take the upper limit. Using the previous lemma, we
get the desired.

�



KOLMOGOROV COMPLEXITY AND ENTROPY OF AMENABLE GROUP ACTIONS 18

Lemma 5.6. If π : BG → AG is a cellular map, then for every y ∈ BG and every
Følner sequence F = (Fi) holds

ACF(π(y)) ≤ ACF (y).

Proof. Let M be a memory set of cellular map π, we assume that 1G belongs to
it. Abusing notation a little, we extend the cellular map to B⋐G. Intuitively, we
apply the local transformation rule from the definition of a cellular map in each
place where we have enough information to do so. Let us make it more precise.
First, Let π̄ : BG → A be the generator map for the cellular map π (that is,
π̄(y) = (π(y))(1G)). We may extend map π̄ to the set of such t ∈ B⋐G that
supp(t) ⊃ M (since for any y ∈ BG the value π̄(y) is completely determined by
prM (y)). Now, for t ∈ A⋐G, we define π(t) in such a way that supp(π(t)) is the
maximal set T satisfying MT ⊂ supp(t), and (π(t))(g) = π̄(gt), for each g ∈ T (we
extended the shift action of the group to the set A⋐G in a natural fashion). It is easy
to see that the extended map π we constructed is consistent with the original one
in the following sense. If T is a finite subset of G, then prT (π(y)) = π(prMT (y)))
for every y ∈ BG. We note that the restriction of π to finite configurations is
a computable function from constructible class B⋐G to constructible class A⋐G.
Let Q : B⋐G × B∗ → A⋐G be the following partial computable function. It takes
t ∈ B⋐G, and a word w ∈ B∗ of the length |M supp(t)\supp(t)| (if length of w does
no satisfy this requirement, the behaviour of Q is undefined), and outputs π(t′),
where t′ is the unique configuration from B⋐G such that

• supp(t′) =M supp(t),
• prsupp(t)(t

′) = t,

• cont(prM supp(t)\supp(t)(t
′)) = w.

Note that

prFi
(π(y)) = π(Q(prFi

(y), cont(prMFi\Fi
(y)))),

for each y ∈ BG. This implies that

C(prFi
(π(y))) ≤ C(prFi

(y)) + C(cont(prMFi\Fi
(y)))

+ 2 logC(cont(prMFi\Fi
(y))),

by Properties 3 and 4 from Proposition 2.2. Since |MFi \ Fi| = o(|Fi|) (by the
definition of Følner sequence) and

C(cont(prMFi\Fi
(y))) ≤ log|B| · |MFi \ Fi|+O(1)

(by Property 1 from Proposition 2.2), we have

C(cont(prMFi\Fi
(y))) = o(|Fi|),

and

logC(cont(prMFi\Fi
(y))) = o(|Fi|).

Thus we have

ACF(π(y)) ≤ ACF (y).

�

We are now able to prove the main monotonicity statement for asymptotic Kol-
mogorov complexity:
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Proposition 5.1. Let π : BG → AG be a measurable equivariant map. Let F =
(Fi) be a modest and tempered Følner sequence. Let µ be an ergodic invariant
measure on BG. For µ-a.e. y ∈ BG holds the following bound:

ACF(π(y)) ≤ ACF (y).

Proof. Take arbitrary ε > 0. We aim to prove that ACF (π(y)) ≤ ACF (y) + ε for
µ-a.e. y ∈ BG. There is ε′ > 0 such that for every non-negative ε′′ < ε′ we have

H(ε′′, 1− ε′′) + ε′′ log|A| ≤ ε.

Let π′ be a cellular map from BG to AG such that for the set W of all the points
y ∈ BG for which (π(y))(1G) 6= (π′(y))(1G), we have µ(W ) < ε′ (see Proposition
2.3). Lemma 5.6 implies that ACF (π

′(y)) ≤ ACF(π
′(y)) for every y ∈ BG. Lemma

5.5 implies that ACF(π(y)) ≤ ACF(π
′(y)) + ε for µ-a.e. y ∈ BG. It follows that

ACF(π(y)) ≤ ACF(y) + ε for µ-a.e. y ∈ BG. �

The next proposition is the main result of this section.

Proposition 5.2. Let A be a finite set. Consider the shift-action of a computable
amenable group G on AG. Let µ be an invariant ergodic measure on AG. Let
F = (Fi) be a modest and tempered Følner sequence. We have

ACF(x) ≤ hG(A
G, µ),

for µ-a.e. x ∈ AG.

Proof. Denote h = hG(A
G, µ). Fix any ε > 0. We will prove that

ACF (x) ≤ h+ ε,

for µ-a.e. x ∈ AG. Let G y (A′G, µ′) be a Bernoulli action of entropy smaller
than ε/2. Consider the product-action G y ((A × A′)G, µ ⊗ µ′). This product
is essentially free. It is also ergodic. Indeed, the product of a Bernoulli action
with itself is ergodic, so its product with any other ergodic action is also ergodic
(see Theorem 3.11 from the book [Gl03]). Entropy of the product is smaller than
h+ ε/2 ([KL16, Theorem 9.16]). By Theorem 2.2, it has a symbolic representation
G y (BG, ν) such that for the canonical alphabet generating partition β holds
H(β) ≤ h+ ε. So we have a factor-map π from (BG, ν) to (AG, µ). By Lemma 5.2,
we have ACF(y) ≤ h+ ε for ν-a.e. y ∈ BG. By Proposition 5.1, we have that for
ν-a.e. holds ACF(π(y)) ≤ ACF(y). This implies that ACF(x) ≤ h + ε for µ-a.e.
x ∈ AG. �

6. Topological entropy; lower and upper bounds for complexity

In this section we first show that for a subshift X ⊂ AG there are points with
lower asymptotic complexities not smaller than the topological entropy of the sub-
shift, and that there is a continuum of such points if X has continuum cardinality.

Afterwards, we will prove that the topological entropy of a subshift bounds from
above asymptotic complexities of its points. The idea behind the proof is the
following. We remind that, if y is an element of a finite set W , then we have the
bound

C(y) ≤ C(W ) + log|W |+ 2 log(C(W )) +O(1).

We use a computable version of the Ornstein-Weiss covering lemma to show that
for every ε > 0 there is a partial computable function Q : Fin(G) → A⋐G and a
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number N such that prFi
(X) ⊂ Q(Fi), and log|Q(Fi)| ≤ |Fi|(h

top
G (X)+ε), for every

i > N . This together with the inequality above would imply the desired bound.

Proposition 6.1. Let A be a finite alphabet and let G be a computable amenable
group. Let X ⊂ AG be a subshift. If F is a modest Følner sequence in G, then
there is a point x ∈ AG such that

ACF (x) ≥ htop
G (X).

If X has continuum cardinality, then there is a continuum of such points.

Proof. By Theorem 2.3, there is an ergodic invariant measure µ such that htopG (X) =
hG(X,µ). There is a point x ∈ X with

ACF(x) ≥ hG(X,µ)

by Proposition 4.1. If htopG (X) = 0, then all the points from X satisfy the require-

ment. If htopG (X) > 0, then measure µ is non-atomic(since otherwise the corespond-
ing maeure entropy would be zero), and hence it is continuous, This means that
any subset of full measure has the continuum cardinality. �

The following is a suitable for our purpose variant of the Ornstein-Weiss lemma.
It deals with the problem of covering the elements of a Følner sequence by translates
of other Følner sets. While it is impossible to achieve a perfect coverage without
intersections, one can have an almost cover with only small intersections.

Lemma 6.1. Let G be a computable amenable group. Let (Fi) be a Følner se-
quence. For every rational ε > 0 there is a finite sequence j1, . . . , jk, a number
N , and program R such that the following holds. Program R receives a finite
subset T . If T = Fi for some i > N , then it outputs the sequence of subsets
R1 = R1(T ), . . . , Rk = Rk(T ) satisfying the assertions below; otherwise its be-
haviour is undefined.

(1)
⋃k

s=1 FjsRs ⊂ T ;

(2) |T \
⋃k

s=1 FjsRs| ≤ ε|T |;

(3)
∑k

s=1|Fjs | · |Rs| ≤ (1 + ε)
∣

∣

∣

⋃k
s=1 FjsRs

∣

∣

∣
;

(4)
∑k

s=1|Fjs | · |Rs| ≤ (1 + ε)|T |.

Proof. If we drop the requirement for R1, . . . , Rk to be generated by a program, the
statement becomes a variant of the Ornstein-Weiss covering lemma (see [OW87] and
[KL16] Lemma 9.23). The program will just search for the output among finitely
many variants. �

Proposition 6.2. Let G be a computable amenable group. Let A be a finite alpha-
bet. Suppose X ⊂ AG is a subshift. Let (Fi) be a modest Følner sequence for group
G. The bound

ACF(x) ≤ htopG (X)

hold for every x ∈ X.

Proof. Denote h = htopG (X). Take an arbitrary rational ε. It suffices to prove that

(*) ACF (x) ≤ (1 + ε)(h+ ε) + ε log|A|,

for every x ∈ X . Throwing away a finite initial part of (Fi), we may assume that

log
∣

∣prFi
(X)

∣

∣ < (h+ ε)|Fi|
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for every i. We apply the previous lemma. This gives us a collection Fj1 , . . . , Fjk , a
number N , and a program R. We record the finite subsets prFj1

(X), . . . , prFjk
(X)

for the future use. Now we will consruct a program Q that will take a finite subset
T of G, and if T = Fi for some i > N , it will output the set Q(T ) of all y ∈ AT

satisfying prFjsm
(y) ∈ prFjsm

(X) for every s ∈ 1..k and m ∈ Rs(T ). Note that

prFjsm
(y) ∈ prFjsm

(X) is equivalent to prFjs
(my) ∈ prFjs

(X)), so we only need

the finite subsets prFj1
(X), . . . , prFjk

(X) for this. Alltogether, Q will first apply

program R to T , and output (if R finished correctly) exactly those y ∈ AT such
that prFjs

(my) ∈ prFjs
(X) for every s ∈ 1..k and m ∈ Rs(T ).

I claim that for i > N we have

(**) log|Q(Fi)| ≤ ((1 + ε)(h+ ε) + ε log|A|) |Fi|.

Indeed, denote

T ′ =

k
⋃

s=1

FjsRs(Fi).

It follows from the previous lemma that

log |prT ′(Q(Fi))| ≤

k
∑

s=1

∑

m∈Ri(Fs)

log
∣

∣

∣
prFjsm

(Q(Fi))
∣

∣

∣
≤ (1 + ε)(h+ ε)|Fi|.

Bound (**) follows since

log|Q(Fi)| ≤ log|prT ′ Q(Fi)|+ |Fi \ T
′| log|A| ≤ log|prT ′ Q(Fi)|+ ε|Fi| log|A|.

Note that for i > N we have prFi
(X) ⊂ Q(Fi). We also have

C(Q(Fi)) ≤ C(Fi) +Oi(1),

by Property 3 from Proposition 2.2. Property 5 from Propostion 2.2 implies that
for every y ∈ Q(Fi) and for i > N we have

C(y) ≤ ((1 + ε)(h+ ε) + ε log|A|) |Fi|+ o(|Fi|).

Hence, (*) holds for every x ∈ X . �

Appendix A. Encoding and decoding algorithms for Propostion 3.1

These algorithms are based on the standard depth-first search algorithm for
graphs (see [CLRS], Chapter 22.3).
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Algorithm 1: Encoding of a connected set

Data: A finite subset T of the group
Result: an encoding binary string

1 encode begin

2 for g ∈ ST ∪ T do

3 visited[g] ← false;

4 end

5 dfs visit (1G)

6 end

7 dfs visit (h) begin
8 if not visited[h] then

9 visited[h] ← true;

10 if h ∈ T then

11 print(’1’);

12 for g ∈ S do

13 dfs visit (gh);

14 end

15 else

16 print(’0’);

17 end

18 end

19 end

Algorithm 2: Decoding of a set

Data: encoding binary string
Result: the list of set elements

1 decode begin

2 n ← length(input string);

3 for g ∈ B(1G, n) do
4 visited[g] ← false;

5 end

6 undfs visit (1G);

7 end

8 undfs visit (h) begin
9 if not visited [h] then

10 visited[h] ← true;

11 read (bit);

12 if bit then

13 print (g);

14 for g ∈ S do

15 undfs visit (gh);

16 end

17 end

18 end

19 end



KOLMOGOROV COMPLEXITY AND ENTROPY OF AMENABLE GROUP ACTIONS 23

References

[A12] A. Alpeev, Kolmogorov Complexity and the Garden of Eden Theorem, arXiv preprint
arXiv:1212.1901 (2012).

[A13] A. V. Alpeev, (in Russian) Entropy and Kolmogorov complexity for subshifts over

amenable groups, specialist’s thesis, unpublished (2013).
[A18] A. Alpeev, An announce of results relating Kolmogorov complexity and entropy of

amenable group actions, Zap. Nauchn, Sem. POMI, 468 (2018): 7–12.
[Be16] A. Bernshteyn, Measurable versions of the Lovász Local Lemma and measurable graph

colorings, arXiv preprint arXiv:1604.07349 (2016).
[Br74] A. A. Brudno, Topological entropy, and complexity in the sense of A. N. Kolmogorov,

Uspekhi Mat. Nauk 29.6(180), (1974): 157–158
[Br78] A. A. Brudno, The complexity of the trajectories of a dynamical system, Uspekhi Mat.

Nauk 33:1(199), (1978): 207–208.
[Br82] A. A. Brudno, Entropy and the complexity of the trajectories of a dynamic system, Tr.

Mosk. Mat. Obs., 44 (1982): 124–149.
[CSC10] T. Ceccherini-Silberstein and M. Coornaert. Cellular automata and groups. Springer,

2010.
[Ceta18] C. T. Conley, S. C. Jackson, D. Kerr, A. S. Marks, B. Seward, and R. D. Tucker-Drob,

Følner tilings for actions of amenable groups, Mathematische Annalen, 371(1-2), (2018):
663–683.

[CLRS] T.H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein. Introduction to algorithms.
MIT press, 2009.

[DHZ19] T. Downarowicz, D. Huczek, and G. Zhang, Tilings of amenable groups, Journal für die
reine und angewandte Mathematik (Crelles Journal) 2019.747, (2019): 277–298.

[EW11] M. Einsiedler and T. Ward. Ergodic theory with a view towards number theory. Graduate
texts in mathematics, 259. Springer, London, 2011.

[Gl03] E. Glasner. Ergodic theory via joinings. Mathematical Surveys and Monographs, 101.

American Mathematical Society, Providence, RI, 2003. xii+384 pp.
[K65] A. N. Kolmogorov, Three approaches to the definition of the concept “quantity of infor-

mation”, Probl. Peredachi Inf., 1:1 (1965): 3–11.
[Ke95] A. Kechris,Classical Descriptive Set Theory. Springer-Verlag, New York, 1995.
[KL16] D. Kerr and H. Li. Ergodic theory. Springer Monographs in Mathematics. Springer, 2016.
[LV97] M. Li and P. Vitanyi. An introduction to Kolmogorov complexity and its applications.

Vol. 34. No. 10. Springer, Heidelberg, 1997.
[L01] E. Lindenstrauss, Pointwise theorems for amenable groups, Inventiones mathematicae

146.2 (2001): 259–295.
[Mo15a] N. Moriakov, Computable Følner monotilings and a theorem of Brudno I, arXiv preprint

arXiv:1509.07858 (2015).
[Mo15b] N. Moriakov, Computable Følner monotilings and a theorem of Brudno II, arXiv preprint

arXiv:1510.03833 (2015).
[Oll85] J. M. Ollagnier. Ergodic theory and statistical mechanics. Vol. 1115. Springer, 1985.
[OW87] D. S. Ornstein and B. Weiss, Entropy and isomorphism theorems for actions of amenable

groups, Journal d’Analyse Mathématique 48.1 (1987): 1-141.
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