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ABSTRACT. We prove the attainability of the best constant in the fractional Hardy—Sobolev in-
equality with a boundary singularity for the spectral Dirichlet Laplacian. The main assumption is
the average concavity of the boundary at the origin. A similar result has been proved earlier for
the conventional Hardy—Sobolev inequality.
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1. Introduction. In this paper we study the problem of the attainability of the best con-

stant 5@?5 () in the fractional Hardy-Sobolev inequality with spectral Dirichlet Laplacian in a C!
bounded domain Q2 C R", n > 2:

TR - el ull}, o) < ((A)duu),  ue Z°(Q), (1)

where 0 < 0 < s <1 and 2} =2n/(n —20).

The fractional spectral Dirichlet Laplacian (—A)g, is the sth power of the Dirichlet Laplacian
on {2 in the sense of spectral theory. This is a self-adjoint operator, which can be restored from its
quadratic form: in the case = R", this form is

(Do) = [ efIFu@Pde Fue= o0 [ @ @)

i.e., (—A)gn coincides with the conventional fractional Laplacian on R™. In the case of the half-space
R" = {z = (2/,2,) e R" ! xR | z,, > 0},
the quadratic form is equal to

N e Gl

R+
— 2 T
Fu(€) = (2m)/2 /Rn w(x)e " sin(z,&p) da,

and for a bounded domain 2,
(=A)duu) =Y A {u, ;)% (3)
j=1

here the A\; and the ¢; are, respectively, the eigenvalues and eigenfunctions (orthonormalized in
Ly(€2)) of the Dirichlet Laplacian on €.

Inequality (1) for s € (0,n/2) follows from a general theorem by Il'in [17, Theorem 1.2, (22)]
on estimates of integral operators on weighted Lebesgue spaces. In R™, in the cases of ¢ = 0 and
o = s, inequality (1) reduces to the fractional Hardy and Sobolev inequalities

(=) w) > Fuollalul ey and (D)) > Sl oy @
The explicit values of .%; o and .%; s were computed in [6] and [3], respectively.
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The attainability of the best constant .7,(€2) in the local case s = 1 has been well studied
(even for the non-Hilbertian case):

e For 0 € Q, 0 € [0,1], and n > 3, the best constant .7, (€2) coincides with .7, (R"™) and is not
attained in the case 21(Q) # 21 (R").

o If 0 € 00 and 2 is a cone in R”, then, for ¢ € (0,1) and n > 2, the best constant .7,(2) is
attained ([4]; [19] in the non-Hilbertian case).

e The case of bounded € with 0 € 9 is much more complicated and depends on the geometry
of 9 at the origin. In [16] the attainability of .#,(€2) was proved for all n > 2 in the case where
the boundary 0f) is regularly varying and average concave at the origin (see Sec. 4). For n > 4,
attainability was proved in [5] under stronger conditions.

The author is aware of only a few works on the attainability of the sharp constant in (1) for s ¢
N. In [15] attainability was shown for Q@ = R™ and s € (0,n/2). In [9] and [13, Sec. 5] attainability
in @ = R’} was shown for (1) with restricted Dirichlet or Neumann fractional Laplacians on the
right-hand side.

In this paper we prove the following results for inequality (1).

e In the case where 0 € Q and 2°(Q2) # 2°(R"), the best constant is not attained.

e In the case {2 = R", the best constant is attained.

e In the case of bounded Q and 0 € J€, the best constant is attained under some geometric
assumptions on 0f) at the origin, analogous to the conditions in [16].

2. Preliminaries. Using the Sobolev inequality (4), we define spaces 2°(R™) and Z°(Q) as
7°(R") :={u € Loy (R") [ ((=A)gnu,u) < oo},
2°(9) :=={u e 2°(R") | u=0 outside Q}.
Recalll that (see, e.g., [10, Lemma 1]) the quadratic form ((—A)u,u) defines an equivalent norm
on 2°(Q).

Let us define the Stinga—Torrea extension for u(z) € 2°() ([14]; sec also [1] for Q = R™): the
Dirichlet problem

div(t'™*Vw(z,t)) =0 in Q x R, Wli=o = u, w|zean =0, (5)

has a unique solution wyg, with finite energy

+00
= 1=281\70 (2, t)|? dz dt.
&,[u] .—/0 /Qt V(e t)[? da dt (6)

In addition, the following relation holds for sufficiently smooth wu:

Owsy

vy

Moreover, wg, can be derived as a minimizer of (6) over the space

(—A)EU(IE) = C, (.’E, 0) = —C, tl_i}gl_‘_ tl_QSatwsp(.’E,t), C, = 4 F(l + S)

C25-T(1—s)°

mS(Q) = {w($7t) | gs[w] < +007 w|t=0 = ’LL, UJ|I€8Q = 0}7
and the quadratic form (3) can be expressed in terms of &[ws,] (see, e.g., [11, (2.6)]) as
(=A)qu, u) = Cubi[wy). (7)

We refer to any function w(x,t) € Ws(2) as an admissible extension of u(z). Obviously, for any
admissible extension w, we have &[w] > &s[wsy].

The attainability of the best constant in (1) is equivalent to the existence of a minimizer for
the functional .Z,:

ol o= NS ®
||| UHLQ;(Q)

318



A standard variational argument shows that each minimizer of (8) solves the following problem (up
to multiplication by a constant):
2r—1 _
A = @ e wed. (9)
|x‘(s_o—)2a

According to [12, Theorem 3], the substitution u — |u| decreases ., . Therefore, if u is a minimizer
of (8), then the right-hand side of (9) is nonnegative. Thus, the maximum principle [2, Lemma 2.6]
shows that u cannot vanish in £ and therefore preserves sign.

Theorem 1. 1. Let 0 € Q, and let 7°(Q) # 2°(R"). Then 5’835((2) is equal to s -(R™) and
s not attained.
2. If Q 1is star-shaped about 0, then the only nonnegative solution of (9) is u = 0.

The proof of the first statement is similar to that in the local case. The second statement follows
from a newly invented nonlocal variant of the Pohozhaev identity.

3. Attainability of the sharp constant yfg(Rz).

Theorem 2. Forn > 1, n > 2s, and o € (0,s), there exists a minimizer of the functional (8)
in R .

Similarly to the local case, the proof is based on the concentration-compactness principle by
Lions [7]. However, to justify the passage to the limit, estimates on the Green function of problem
(5) in R”} are required.

We denote the obtained minimizer by ®(z) and its Stinga—Torrea extension by # (z,t). Without

loss of generality, we can assume that |||z|7~*®| 1, (r7) = 1; therefore, we have & V] = yg?;’ (R%).

Remark 1. A minimizer of (8) with [|[z|7~*®]|,, (rn) = 1 is not unique. Indeed, the functional
(8) is invariant with respect to dilations and multiplication by constants. Compositions of these
transformations that preserve the norm |[||z[7~*®]| . (ry) = 1 give us numerous minimizers.

Lemma 1. Any minimizer ®(x) and its Stinga—Torrea extension # (x,t) satisfy the following
estimates:

Cxp n
() < 14 |z|n—2s+2 z € RY, 10)
Cxy, n
W (x,t) < |+ |(a, £)|n—2s+2 (x,t) € R x Ry,
e 1-2 2 C
¥ (x) ;:/0 BT @ OPAS | e T ERY (11)

where the constants C depend on n, s, and o and on the choice of the minimizer ®.

To obtain these estimates, we first prove the boundedness of the function ® by using a modifi-
cation of De Giorgi’s technique; see [18, Ch. II, Sec. 5]. More precise estimates follow from estimates
on the Green function of problem (5) in R’ . Estimates of the behavior of ® and % at infinity are
obtained from the estimates at the origin via the s-Kelvin transform.

4. Attainability of the sharp constant ysg’(ﬂ) We assume that in a neighborhood
{x: |z| < 70} of the origin the surface 9 is given by the equation x, = F(2'), where F € C*,
F(0) =0, and VF(0) = 0. Following [16], we assume that 9 is average concave at the origin,
i.e., for small 7 > 0, we have

1
8772 Jsp-2

Obviously, f € C! for small 7. We also assume that f is regularly varying at the origin with
exponent « € [1,n — 2s+ 3), i.e., for any a > 0,
lim 7 (97) _ o (13)
T—0 f(T)

F(r) = F(a')d' < 0. (12)
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Finally, we assume that the following technical assumption holds:

T

lim / Vo F(a) | dz' = 0. 14
g2 p(r) Jopoa T .

Remark 2. In the case where 9 is C? and has negative mean curvature at the origin, our
assumptions (12)—(14) are fulfilled with oo = 2 (see [16, Remark 1]). We also emphasize that these
assumptions admit the absence of mean curvature (o < 2) or its vanishing (o > 2).

Theorem 3. Let 0 satisfy (12)—(14). Then the minimizer of (8) exists, i.e., problem (9) has
a positive solution in €).

Sketch of proof. We consider a minimizing sequence uy(x) for (8). Using the Lions principle,
we obtain two alternatives: either uy, is relatively compact in 2°(Q), or ||z|”~*uy|> — do(z). We
prove that, in the second case,

S S
oo () = FFRL). (15)

It remains to show that (15) cannot hold under assumptions (12)—(14). To prove this, we construct
a function ®.(x) such that 7, [®.(x)] < yﬁg(m). Let ©(z) = o — F(2')e, be a coordinate
transformation that flattens the boundary 09Q. For § € (0,r), we define ¢(x) := ¢5(0O(z)), where
s(x) is a cut-off function supported in the J-neighborhood of the origin. We put

O (x) =& PP O(2))P(x),
we(z,t) = e~ 22 (71O (x), e 1) ().

Obviously, w.(x,t) is an admissible extension of ®.(x); therefore,

(—2)5%e, @) _ Jo'™ Jot' 7> Vuwe (. 1) dudt

TN o @2 ) S el al)

(16)

2 HQ
Lox () Lox ()

From (10) and (11) we derive the following estimates for the numerator and denominator on the
right-hand side of (16) (the second estimate essentially uses the fact that « € [1,n — 2s + 3)):

z)|%
/Q \‘;I)lis(—f)f‘ﬂ: dr =1— () (14 0:(1) + 05(1)), (17)
Sp (mn
Elw] = TSR + e) - (1 o)+ os(1) = =2 @) (1 (1)), (19

where @ (¢), 9% (¢) < 0 and, for fixed § and £ — 0,
i (e) ~ Cretf(e), ah(e) ~ Coe™t f(e), Cy,Co > 0.
Therefore, for sufficiently small § and e, we have

FEBRE) + h(e) - (1+ 0:(1) + 05(1) — P EE (0) - (14 0.(1))

(1—A(e) - (14 0:(1) + 05(1)))2/%
= SEPRY) + ah(e) - (14 0:(1) + 05(1)) < F2E(RY).

I[P ()] <

Thus, (15) is not fulfilled and a minimizer exists, which proves Theorem 3.
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