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Abstract. We prove the attainability of the best constant in the fractional Hardy–Sobolev in-
equality with a boundary singularity for the spectral Dirichlet Laplacian. The main assumption is
the average concavity of the boundary at the origin. A similar result has been proved earlier for
the conventional Hardy–Sobolev inequality.
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1. Introduction. In this paper we study the problem of the attainability of the best con-

stant S Sp
s,σ (Ω) in the fractional Hardy–Sobolev inequality with spectral Dirichlet Laplacian in a C1

bounded domain Ω ⊂ R
n , n � 2:

S Sp
s,σ (Ω) · ‖|x|σ−su‖2L2∗σ (Ω) � 〈(−Δ)sΩu, u〉, u ∈ ˜Ds(Ω), (1)

where 0 < σ < s < 1 and 2∗σ ≡ 2n/(n− 2σ).
The fractional spectral Dirichlet Laplacian (−Δ)sΩ is the sth power of the Dirichlet Laplacian

on Ω in the sense of spectral theory. This is a self-adjoint operator, which can be restored from its
quadratic form: in the case Ω = R

n, this form is

〈(−Δ)sRnu, u〉 :=
∫

Rn

|ξ|2s|Fu(ξ)|2 dξ, Fu(ξ) :=
1

(2π)n/2

∫

Rn

e−iξ·xu(x) dx, (2)

i.e., (−Δ)s
Rn coincides with the conventional fractional Laplacian on R

n . In the case of the half-space

R
n
+ := {x ≡ (x′, xn) ∈ R

n−1 × R | xn > 0},
the quadratic form is equal to

〈(−Δ)s
R
n
+
u, u〉 :=

∫

R
n
+

|ξ|2s|̂Fu(ξ)|2 dξ,

̂Fu(ξ) :=
2

(2π)n/2

∫

Rn

u(x)e−iξ′·x′
sin(xnξn) dx,

and for a bounded domain Ω,

〈(−Δ)sΩu, u〉 :=
∞
∑

j=1

λs
j〈u, φj〉2; (3)

here the λj and the φj are, respectively, the eigenvalues and eigenfunctions (orthonormalized in
L2(Ω)) of the Dirichlet Laplacian on Ω.

Inequality (1) for s ∈ (0, n/2) follows from a general theorem by Il′ in [17, Theorem 1.2, (22)]
on estimates of integral operators on weighted Lebesgue spaces. In R

n , in the cases of σ = 0 and
σ = s, inequality (1) reduces to the fractional Hardy and Sobolev inequalities

〈(−Δ)s
Rnu, u〉 � Ss,0‖|x|−su‖2L2(Rn) and 〈(−Δ)s

Rnu, u〉 � Ss,s‖u‖2L2∗s (R
n). (4)

The explicit values of Ss,0 and Ss,s were computed in [6] and [3], respectively.
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The attainability of the best constant Sσ(Ω) in the local case s = 1 has been well studied
(even for the non-Hilbertian case):

• For 0 ∈ Ω, σ ∈ [0, 1], and n � 3, the best constant Sσ(Ω) coincides with Sσ(R
n) and is not

attained in the case ˜D1(Ω) �= D1(Rn).
• If 0 ∈ ∂Ω and Ω is a cone in R

n , then, for σ ∈ (0, 1) and n � 2, the best constant Sσ(Ω) is
attained ([4]; [19] in the non-Hilbertian case).

• The case of bounded Ω with 0 ∈ ∂Ω is much more complicated and depends on the geometry
of ∂Ω at the origin. In [16] the attainability of Sσ(Ω) was proved for all n � 2 in the case where
the boundary ∂Ω is regularly varying and average concave at the origin (see Sec. 4). For n � 4,
attainability was proved in [5] under stronger conditions.

The author is aware of only a few works on the attainability of the sharp constant in (1) for s /∈
N. In [15] attainability was shown for Ω = R

n and s ∈ (0, n/2). In [9] and [13, Sec. 5] attainability
in Ω = R

n
+ was shown for (1) with restricted Dirichlet or Neumann fractional Laplacians on the

right-hand side.
In this paper we prove the following results for inequality (1).

• In the case where 0 ∈ Ω and ˜Ds(Ω) �= Ds(Rn), the best constant is not attained.
• In the case Ω = R

n
+ , the best constant is attained.

• In the case of bounded Ω and 0 ∈ ∂Ω, the best constant is attained under some geometric
assumptions on ∂Ω at the origin, analogous to the conditions in [16].

2. Preliminaries. Using the Sobolev inequality (4), we define spaces Ds(Rn) and ˜Ds(Ω) as

Ds(Rn) := {u ∈ L2∗s (R
n) | 〈(−Δ)sRnu, u〉 < ∞},

˜Ds(Ω) := {u ∈ Ds(Rn) | u ≡ 0 outside Ω}.
Recall that (see, e.g., [10, Lemma 1]) the quadratic form 〈(−Δ)sΩu, u〉 defines an equivalent norm

on ˜Ds(Ω).

Let us define the Stinga–Torrea extension for u(x) ∈ ˜Ds(Ω) ([14]; see also [1] for Ω = R
n): the

Dirichlet problem

div(t1−2s∇w(x, t)) = 0 in Ω× R+, w|t=0 = u, w|x∈∂Ω = 0, (5)

has a unique solution wsp with finite energy

Es[w] :=

∫ +∞

0

∫

Ω
t1−2s|∇w(x, t)|2 dx dt. (6)

In addition, the following relation holds for sufficiently smooth u:

(−Δ)sΩu(x) = Cs
∂wsp

∂νs
(x, 0) := −Cs lim

t→0+
t1−2s∂twsp(x, t), Cs :=

4sΓ(1 + s)

2s · Γ(1− s)
.

Moreover, wsp can be derived as a minimizer of (6) over the space

Ws(Ω) := {w(x, t) | Es[w] < +∞, w|t=0 = u, w|x∈∂Ω = 0},
and the quadratic form (3) can be expressed in terms of Es[wsp] (see, e.g., [11, (2.6)]) as

〈(−Δ)sΩu, u〉 = CsEs[wsp]. (7)

We refer to any function w(x, t) ∈ Ws(Ω) as an admissible extension of u(x). Obviously, for any
admissible extension w, we have Es[w] � Es[wsp].

The attainability of the best constant in (1) is equivalent to the existence of a minimizer for
the functional Iσ :

Iσ[u] :=
〈(−Δ)sΩu, u〉

‖|x|σ−su‖2L2∗σ (Ω)

. (8)
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A standard variational argument shows that each minimizer of (8) solves the following problem (up
to multiplication by a constant):

(−Δ)sΩu(x) =
u2

∗
σ−1(x)

|x|(s−σ)2∗σ
in Ω, u ∈ ˜Ds(Ω). (9)

According to [12, Theorem 3], the substitution u → |u| decreases Iσ,Ω . Therefore, if u is a minimizer
of (8), then the right-hand side of (9) is nonnegative. Thus, the maximum principle [2, Lemma 2.6]
shows that u cannot vanish in Ω and therefore preserves sign.

Theorem 1. 1. Let 0 ∈ Ω, and let ˜Ds(Ω) �= Ds(Rn). Then S Sp
s,σ (Ω) is equal to Ss,σ(R

n) and
is not attained.

2. If Ω is star-shaped about 0, then the only nonnegative solution of (9) is u ≡ 0.

The proof of the first statement is similar to that in the local case. The second statement follows
from a newly invented nonlocal variant of the Pohozhaev identity.

3. Attainability of the sharp constant S Sp
s,σ(R

n
+).

Theorem 2. For n � 1, n > 2s, and σ ∈ (0, s), there exists a minimizer of the functional (8)
in R

n
+ .

Similarly to the local case, the proof is based on the concentration-compactness principle by
Lions [7]. However, to justify the passage to the limit, estimates on the Green function of problem
(5) in R

n
+ are required.

We denote the obtained minimizer by Φ(x) and its Stinga–Torrea extension by W (x, t). Without

loss of generality, we can assume that ‖|x|σ−sΦ‖L2∗σ (R
n
+) = 1; therefore, we have Es[W ] = S Sp

s,σ(Rn
+).

Remark 1. A minimizer of (8) with ‖|x|σ−sΦ‖L2∗σ (R
n
+) = 1 is not unique. Indeed, the functional

(8) is invariant with respect to dilations and multiplication by constants. Compositions of these
transformations that preserve the norm ‖|x|σ−sΦ‖L2∗σ (R

n
+) = 1 give us numerous minimizers.

Lemma 1. Any minimizer Φ(x) and its Stinga–Torrea extension W (x, t) satisfy the following
estimates :

Φ(x) � Cxn
1 + |x|n−2s+2

, x ∈ R
n
+,

W (x, t) � Cxn
1 + |(x, t)|n−2s+2

, (x, t) ∈ R
n
+ × R+,

(10)

V (x) :=

∫ +∞

0
t1−2s|∇W (x, t)|2dt � C

1 + |x|2n−2s+2
, x ∈ R

n
+, (11)

where the constants C depend on n, s, and σ and on the choice of the minimizer Φ.

To obtain these estimates, we first prove the boundedness of the function Φ by using a modifi-
cation of De Giorgi’s technique; see [18, Ch. II, Sec. 5]. More precise estimates follow from estimates
on the Green function of problem (5) in R

n
+ . Estimates of the behavior of Φ and W at infinity are

obtained from the estimates at the origin via the s-Kelvin transform.

4. Attainability of the sharp constant S Sp
s,σ(Ω). We assume that in a neighborhood

{x : |x| < r0} of the origin the surface ∂Ω is given by the equation xn = F (x′), where F ∈ C1 ,
F (0) = 0, and ∇x′F (0) = 0. Following [16], we assume that ∂Ω is average concave at the origin,
i.e., for small τ > 0, we have

f(τ) :=
1

|Sn−2
τ |

∫

S
n−2
τ

F (x′) dx′ < 0. (12)

Obviously, f ∈ C1 for small τ . We also assume that f is regularly varying at the origin with
exponent α ∈ [1, n − 2s+ 3), i.e., for any a > 0,

lim
τ→0

f(aτ)

f(τ)
= aα. (13)
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Finally, we assume that the following technical assumption holds:

lim
τ→0

τ

|Sn−2
τ | · f(τ)

∫

S
n−2
τ

|∇x′F (x′)|2 dx′ = 0. (14)

Remark 2. In the case where ∂Ω is C2 and has negative mean curvature at the origin, our
assumptions (12)–(14) are fulfilled with α = 2 (see [16, Remark 1]). We also emphasize that these
assumptions admit the absence of mean curvature (α < 2) or its vanishing (α > 2).

Theorem 3. Let ∂Ω satisfy (12)–(14). Then the minimizer of (8) exists, i.e., problem (9) has
a positive solution in Ω.

Sketch of proof. We consider a minimizing sequence uk(x) for (8). Using the Lions principle,

we obtain two alternatives: either uk is relatively compact in ˜Ds(Ω), or ||x|σ−suk|2∗σ ⇁ δ0(x). We
prove that, in the second case,

S Sp
s,σ(Ω) = S Sp

s,σ(R
n
+). (15)

It remains to show that (15) cannot hold under assumptions (12)–(14). To prove this, we construct

a function Φε(x) such that Iσ[Φε(x)] < S Sp
s,σ (Rn

+). Let Θ(x) = x − F (x′)en be a coordinate
transformation that flattens the boundary ∂Ω. For δ ∈ (0, r0), we define ϕ̃(x) := ϕδ(Θ(x)), where
ϕδ(x) is a cut-off function supported in the δ-neighborhood of the origin. We put

Φε(x) := ε−(n−2s)/2Φ(ε−1Θ(x))ϕ̃(x),

wε(x, t) := ε−(n−2s)/2W (ε−1Θ(x), ε−1t)ϕ̃(x).

Obviously, wε(x, t) is an admissible extension of Φε(x); therefore,

Iσ[Φε(x)] =
〈(−Δ)sΩΦε,Φε〉

‖|x|σ−sΦε(x)‖2L2∗σ (Ω)

�
∫ +∞
0

∫

Ω t1−2s|∇wε(x, t)|2 dx dt
‖|x|σ−sΦε(x)‖2L2∗σ (Ω)

. (16)

From (10) and (11) we derive the following estimates for the numerator and denominator on the
right-hand side of (16) (the second estimate essentially uses the fact that α ∈ [1, n − 2s+ 3)):

∫

Ω

|Φε(x)|2∗σ
|x|(s−σ)2∗σ

dx = 1− A1(ε) · (1 + oε(1) + oδ(1)), (17)

Es[wε] = S Sp
s,σ(R

n
+) + A2(ε) · (1 + oε(1) + oδ(1)) −

2S Sp
s,σ (Rn

+)

2∗σ
A1(ε) · (1 + oε(1)), (18)

where A1(ε),A2(ε) < 0 and, for fixed δ and ε → 0,

A1(ε) ∼ C1ε
−1f(ε), A2(ε) ∼ C2ε

−1f(ε), C1, C2 > 0.

Therefore, for sufficiently small δ and ε, we have

Iσ[Φε(x)] �
S Sp

s,σ(Rn
+) + A2(ε) · (1 + oε(1) + oδ(1)) − 2S Sp

s,σ(R
n
+)

2∗σ
A1(ε) · (1 + oε(1))

(1− A1(ε) · (1 + oε(1) + oδ(1)))2/2
∗
σ

= S Sp
s,σ(R

n
+) + A2(ε) · (1 + oε(1) + oδ(1)) < S Sp

s,σ(R
n
+).

Thus, (15) is not fulfilled and a minimizer exists, which proves Theorem 3.
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