ISSN 0016-2663, Functional Analysis and Its Applications, 2019, Vol. 53, No. 4, pp. 317–321. © Pleiades Publishing, Ltd., 2019. Russian Text © The Author(s), 2019, published in Funktsional'nyi Analiz i Ego Prilozheniya, 2019, Vol. 53, No. 4, pp. 93–98.

On the Attainability of the Best Constant in Fractional Hardy–Sobolev Inequalities Involving the Spectral Dirichlet Laplacian

N. S. Ustinov

Received March 16, 2019; in final form, March 16, 2019; accepted May 16, 2019

ABSTRACT. We prove the attainability of the best constant in the fractional Hardy–Sobolev inequality with a boundary singularity for the spectral Dirichlet Laplacian. The main assumption is the average concavity of the boundary at the origin. A similar result has been proved earlier for the conventional Hardy–Sobolev inequality.

KEY WORDS: fractional Laplacian, attainability of the best constant, Navier Laplacian, spectral Dirichlet Laplacian.

DOI: 10.1134/S0016266319040105

1. Introduction. In this paper we study the problem of the attainability of the best constant $\mathscr{S}^{Sp}_{s,\sigma}(\Omega)$ in the fractional Hardy–Sobolev inequality with *spectral Dirichlet Laplacian* in a C^1 bounded domain $\Omega \subset \mathbb{R}^n$, $n \geq 2$:

$$\mathscr{S}^{Sp}_{s,\sigma}(\Omega) \cdot |||x|^{\sigma-s} u||^{2}_{L_{2^{*}_{\sigma}}(\Omega)} \leqslant \langle (-\Delta)^{s}_{\Omega} u, u \rangle, \qquad u \in \widetilde{\mathscr{D}}^{s}(\Omega),$$
(1)

where $0 < \sigma < s < 1$ and $2^*_{\sigma} \equiv 2n/(n-2\sigma)$.

The fractional spectral Dirichlet Laplacian $(-\Delta)^s_{\Omega}$ is the sth power of the Dirichlet Laplacian on Ω in the sense of spectral theory. This is a self-adjoint operator, which can be restored from its quadratic form: in the case $\Omega = \mathbb{R}^n$, this form is

$$\langle (-\Delta)_{\mathbb{R}^n}^s u, u \rangle := \int_{\mathbb{R}^n} |\xi|^{2s} |\mathscr{F}u(\xi)|^2 d\xi, \qquad \mathscr{F}u(\xi) := \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{-i\xi \cdot x} u(x) dx, \tag{2}$$

i.e., $(-\Delta)_{\mathbb{R}^n}^s$ coincides with the conventional fractional Laplacian on \mathbb{R}^n . In the case of the half-space

$$\mathbb{R}^n_+ := \{ x \equiv (x', x_n) \in \mathbb{R}^{n-1} \times \mathbb{R} \mid x_n > 0 \}$$

the quadratic form is equal to

$$\langle (-\Delta)^s_{\mathbb{R}^n_+} u, u \rangle := \int_{\mathbb{R}^n_+} |\xi|^{2s} |\widehat{\mathscr{F}}u(\xi)|^2 d\xi,$$
$$\widehat{\mathscr{F}}u(\xi) := \frac{2}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} u(x) e^{-i\xi' \cdot x'} \sin(x_n\xi_n) dx,$$

and for a bounded domain Ω ,

$$\langle (-\Delta)_{\Omega}^{s} u, u \rangle := \sum_{j=1}^{\infty} \lambda_{j}^{s} \langle u, \phi_{j} \rangle^{2};$$
(3)

here the λ_j and the ϕ_j are, respectively, the eigenvalues and eigenfunctions (orthonormalized in $L_2(\Omega)$) of the Dirichlet Laplacian on Ω .

Inequality (1) for $s \in (0, n/2)$ follows from a general theorem by II' in [17, Theorem 1.2, (22)] on estimates of integral operators on weighted Lebesgue spaces. In \mathbb{R}^n , in the cases of $\sigma = 0$ and $\sigma = s$, inequality (1) reduces to the fractional Hardy and Sobolev inequalities

$$\langle (-\Delta)_{\mathbb{R}^n}^s u, u \rangle \geqslant \mathscr{S}_{s,0} \| |x|^{-s} u \|_{L_2(\mathbb{R}^n)}^2 \quad \text{and} \quad \langle (-\Delta)_{\mathbb{R}^n}^s u, u \rangle \geqslant \mathscr{S}_{s,s} \| u \|_{L_{2^*_s}(\mathbb{R}^n)}^2.$$
(4)

The explicit values of $\mathscr{S}_{s,0}$ and $\mathscr{S}_{s,s}$ were computed in [6] and [3], respectively.

The attainability of the best constant $\mathscr{S}_{\sigma}(\Omega)$ in the local case s = 1 has been well studied (even for the non-Hilbertian case):

• For $0 \in \Omega$, $\sigma \in [0,1]$, and $n \ge 3$, the best constant $\mathscr{S}_{\sigma}(\Omega)$ coincides with $\mathscr{S}_{\sigma}(\mathbb{R}^n)$ and is not attained in the case $\widetilde{\mathscr{D}}^1(\Omega) \neq \mathscr{D}^1(\mathbb{R}^n)$.

• If $0 \in \partial\Omega$ and Ω is a cone in \mathbb{R}^n , then, for $\sigma \in (0, 1)$ and $n \ge 2$, the best constant $\mathscr{S}_{\sigma}(\Omega)$ is attained ([4]; [19] in the non-Hilbertian case).

• The case of bounded Ω with $0 \in \partial \Omega$ is much more complicated and depends on the geometry of $\partial \Omega$ at the origin. In [16] the attainability of $\mathscr{S}_{\sigma}(\Omega)$ was proved for all $n \geq 2$ in the case where the boundary $\partial \Omega$ is regularly varying and average concave at the origin (see Sec. 4). For $n \geq 4$, attainability was proved in [5] under stronger conditions.

The author is aware of only a few works on the attainability of the sharp constant in (1) for $s \notin \mathbb{N}$. In [15] attainability was shown for $\Omega = \mathbb{R}^n$ and $s \in (0, n/2)$. In [9] and [13, Sec. 5] attainability in $\Omega = \mathbb{R}^n_+$ was shown for (1) with restricted Dirichlet or Neumann fractional Laplacians on the right-hand side.

In this paper we prove the following results for inequality (1).

• In the case where $0 \in \Omega$ and $\mathscr{D}^{s}(\Omega) \neq \mathscr{D}^{s}(\mathbb{R}^{n})$, the best constant is not attained.

• In the case $\Omega = \mathbb{R}^n_+$, the best constant is attained.

• In the case of bounded Ω and $0 \in \partial \Omega$, the best constant *is attained* under some geometric assumptions on $\partial \Omega$ at the origin, analogous to the conditions in [16].

2. Preliminaries. Using the Sobolev inequality (4), we define spaces $\mathscr{D}^{s}(\mathbb{R}^{n})$ and $\widetilde{\mathscr{D}}^{s}(\Omega)$ as

$$\mathcal{D}^{s}(\mathbb{R}^{n}) := \{ u \in L_{2^{*}_{s}}(\mathbb{R}^{n}) \mid \langle (-\Delta)^{s}_{\mathbb{R}^{n}}u, u \rangle < \infty \}, \\ \widetilde{\mathcal{D}}^{s}(\Omega) := \{ u \in \mathcal{D}^{s}(\mathbb{R}^{n}) \mid u \equiv 0 \text{ outside } \overline{\Omega} \}.$$

Recall that (see, e.g., [10, Lemma 1]) the quadratic form $\langle (-\Delta)^s_{\Omega} u, u \rangle$ defines an equivalent norm on $\widetilde{\mathscr{D}}^s(\Omega)$.

Let us define the Stinga–Torrea extension for $u(x) \in \widetilde{\mathscr{D}}^{s}(\Omega)$ ([14]; see also [1] for $\Omega = \mathbb{R}^{n}$): the Dirichlet problem

$$\operatorname{div}(t^{1-2s}\nabla w(x,t)) = 0 \quad \text{in } \Omega \times \mathbb{R}_+, \qquad w|_{t=0} = u, \ w|_{x \in \partial\Omega} = 0, \tag{5}$$

has a unique solution w_{sp} with finite energy

$$\mathscr{E}_s[w] := \int_0^{+\infty} \int_{\Omega} t^{1-2s} |\nabla w(x,t)|^2 \, dx \, dt. \tag{6}$$

In addition, the following relation holds for sufficiently smooth u:

$$(-\Delta)^s_{\Omega}u(x) = C_s \frac{\partial w_{sp}}{\partial \nu_s}(x,0) := -C_s \lim_{t \to 0_+} t^{1-2s} \partial_t w_{sp}(x,t), \qquad C_s := \frac{4^s \Gamma(1+s)}{2s \cdot \Gamma(1-s)}.$$

Moreover, w_{sp} can be derived as a minimizer of (6) over the space

$$\mathfrak{W}_s(\Omega) := \{ w(x,t) \mid \mathscr{E}_s[w] < +\infty, \ w|_{t=0} = u, \ w|_{x \in \partial\Omega} = 0 \},$$

and the quadratic form (3) can be expressed in terms of $\mathscr{E}_s[w_{sp}]$ (see, e.g., [11, (2.6)]) as

$$\langle (-\Delta)^s_{\Omega} u, u \rangle = C_s \mathscr{E}_s[w_{sp}]. \tag{7}$$

We refer to any function $w(x,t) \in \mathfrak{W}_s(\Omega)$ as an *admissible extension* of u(x). Obviously, for any admissible extension w, we have $\mathscr{E}_s[w] \ge \mathscr{E}_s[w_{sp}]$.

The attainability of the best constant in (1) is equivalent to the existence of a minimizer for the functional \mathscr{I}_{σ} :

$$\mathscr{I}_{\sigma}[u] := \frac{\langle (-\Delta)^{s}_{\Omega} u, u \rangle}{\||x|^{\sigma-s} u\|^{2}_{L^{2}_{\sigma}}(\Omega)}.$$
(8)

A standard variational argument shows that each minimizer of (8) solves the following problem (up to multiplication by a constant):

$$(-\Delta)^{s}_{\Omega}u(x) = \frac{u^{2^{*}_{\sigma}-1}(x)}{|x|^{(s-\sigma)2^{*}_{\sigma}}} \quad \text{in } \Omega, \qquad u \in \widetilde{\mathscr{D}}^{s}(\Omega).$$

$$\tag{9}$$

According to [12, Theorem 3], the substitution $u \to |u|$ decreases $\mathscr{I}_{\sigma,\Omega}$. Therefore, if u is a minimizer of (8), then the right-hand side of (9) is nonnegative. Thus, the maximum principle [2, Lemma 2.6] shows that u cannot vanish in Ω and therefore preserves sign.

Theorem 1. 1. Let $0 \in \Omega$, and let $\widetilde{\mathscr{D}}^{s}(\Omega) \neq \mathscr{D}^{s}(\mathbb{R}^{n})$. Then $\mathscr{S}^{Sp}_{s,\sigma}(\Omega)$ is equal to $\mathscr{S}_{s,\sigma}(\mathbb{R}^{n})$ and is not attained.

2. If Ω is star-shaped about 0, then the only nonnegative solution of (9) is $u \equiv 0$.

The proof of the first statement is similar to that in the local case. The second statement follows from a newly invented nonlocal variant of the Pohozhaev identity.

3. Attainability of the sharp constant $\mathscr{S}^{Sp}_{s,\sigma}(\mathbb{R}^n_+)$.

Theorem 2. For $n \ge 1$, n > 2s, and $\sigma \in (0, s)$, there exists a minimizer of the functional (8) in \mathbb{R}^n_+ .

Similarly to the local case, the proof is based on the concentration-compactness principle by Lions [7]. However, to justify the passage to the limit, estimates on the Green function of problem (5) in \mathbb{R}^n_+ are required.

We denote the obtained minimizer by $\Phi(x)$ and its Stinga–Torrea extension by $\mathscr{W}(x,t)$. Without loss of generality, we can assume that $|||x|^{\sigma-s}\Phi||_{L_{2^*_{\sigma}}(\mathbb{R}^n_+)} = 1$; therefore, we have $\mathscr{E}_s[\mathscr{W}] = \mathscr{S}^{Sp}_{s,\sigma}(\mathbb{R}^n_+)$.

Remark 1. A minimizer of (8) with $||x|^{\sigma-s}\Phi||_{L_{2^*_{\sigma}}(\mathbb{R}^n_+)} = 1$ is not unique. Indeed, the functional (8) is invariant with respect to dilations and multiplication by constants. Compositions of these transformations that preserve the norm $||x|^{\sigma-s}\Phi||_{L_{2^*_{\sigma}}(\mathbb{R}^n_+)} = 1$ give us numerous minimizers.

Lemma 1. Any minimizer $\Phi(x)$ and its Stinga–Torrea extension $\mathcal{W}(x,t)$ satisfy the following estimates:

$$\Phi(x) \leqslant \frac{Cx_n}{1+|x|^{n-2s+2}}, \qquad x \in \mathbb{R}^n_+,$$

$$\mathscr{W}(x,t) \leqslant \frac{Cx_n}{1+|(x,t)|^{n-2s+2}}, \qquad (x,t) \in \mathbb{R}^n_+ \times \mathbb{R}_+,$$
(10)

$$\mathscr{V}(x) := \int_{0}^{+\infty} t^{1-2s} |\nabla \mathscr{W}(x,t)|^2 dt \leqslant \frac{C}{1+|x|^{2n-2s+2}}, \qquad x \in \mathbb{R}^n_+, \tag{11}$$

where the constants C depend on n, s, and σ and on the choice of the minimizer Φ .

To obtain these estimates, we first prove the boundedness of the function Φ by using a modification of De Giorgi's technique; see [18, Ch. II, Sec. 5]. More precise estimates follow from estimates on the Green function of problem (5) in \mathbb{R}^n_+ . Estimates of the behavior of Φ and \mathscr{W} at infinity are obtained from the estimates at the origin via the *s*-Kelvin transform.

4. Attainability of the sharp constant $\mathscr{S}_{s,\sigma}^{Sp}(\Omega)$. We assume that in a neighborhood $\{x: |x| < r_0\}$ of the origin the surface $\partial\Omega$ is given by the equation $x_n = F(x')$, where $F \in C^1$, F(0) = 0, and $\nabla_{x'}F(0) = 0$. Following [16], we assume that $\partial\Omega$ is average concave at the origin, i.e., for small $\tau > 0$, we have

$$f(\tau) := \frac{1}{|\mathbb{S}_{\tau}^{n-2}|} \int_{\mathbb{S}_{\tau}^{n-2}} F(x') \, dx' < 0.$$
(12)

Obviously, $f \in C^1$ for small τ . We also assume that f is regularly varying at the origin with exponent $\alpha \in [1, n - 2s + 3)$, i.e., for any a > 0,

$$\lim_{\tau \to 0} \frac{f(a\tau)}{f(\tau)} = a^{\alpha}.$$
(13)

319

Finally, we assume that the following technical assumption holds:

$$\lim_{\tau \to 0} \frac{\tau}{|\mathbb{S}_{\tau}^{n-2}| \cdot f(\tau)} \int_{\mathbb{S}_{\tau}^{n-2}} |\nabla_{x'} F(x')|^2 \, dx' = 0.$$
(14)

Remark 2. In the case where $\partial \Omega$ is C^2 and has negative mean curvature at the origin, our assumptions (12)–(14) are fulfilled with $\alpha = 2$ (see [16, Remark 1]). We also emphasize that these assumptions admit the absence of mean curvature ($\alpha < 2$) or its vanishing ($\alpha > 2$).

Theorem 3. Let $\partial\Omega$ satisfy (12)–(14). Then the minimizer of (8) exists, i.e., problem (9) has a positive solution in Ω .

Sketch of proof. We consider a minimizing sequence $u_k(x)$ for (8). Using the Lions principle, we obtain two alternatives: either u_k is relatively compact in $\widetilde{\mathscr{D}}^s(\Omega)$, or $||x|^{\sigma-s}u_k|^{2^*_{\sigma}} \to \delta_0(x)$. We prove that, in the second case,

$$\mathscr{S}^{Sp}_{s,\sigma}(\Omega) = \mathscr{S}^{Sp}_{s,\sigma}(\mathbb{R}^n_+).$$
(15)

It remains to show that (15) cannot hold under assumptions (12)–(14). To prove this, we construct a function $\Phi_{\varepsilon}(x)$ such that $\mathscr{I}_{\sigma}[\Phi_{\varepsilon}(x)] < \mathscr{S}^{Sp}_{s,\sigma}(\mathbb{R}^n_+)$. Let $\Theta(x) = x - F(x')e_n$ be a coordinate transformation that flattens the boundary $\partial\Omega$. For $\delta \in (0, r_0)$, we define $\widetilde{\varphi}(x) := \varphi_{\delta}(\Theta(x))$, where $\varphi_{\delta}(x)$ is a cut-off function supported in the δ -neighborhood of the origin. We put

$$\Phi_{\varepsilon}(x) := \varepsilon^{-(n-2s)/2} \Phi(\varepsilon^{-1}\Theta(x))\widetilde{\varphi}(x),$$
$$w_{\varepsilon}(x,t) := \varepsilon^{-(n-2s)/2} \mathscr{W}(\varepsilon^{-1}\Theta(x),\varepsilon^{-1}t)\widetilde{\varphi}(x).$$

Obviously, $w_{\varepsilon}(x,t)$ is an admissible extension of $\Phi_{\varepsilon}(x)$; therefore,

$$\mathscr{I}_{\sigma}[\Phi_{\varepsilon}(x)] = \frac{\langle (-\Delta)^{s}_{\Omega} \Phi_{\varepsilon}, \Phi_{\varepsilon} \rangle}{\||x|^{\sigma-s} \Phi_{\varepsilon}(x)\|^{2}_{L_{2^{*}_{\sigma}}(\Omega)}} \leqslant \frac{\int_{0}^{+\infty} \int_{\Omega} t^{1-2s} |\nabla w_{\varepsilon}(x,t)|^{2} \, dx \, dt}{\||x|^{\sigma-s} \Phi_{\varepsilon}(x)\|^{2}_{L_{2^{*}_{\sigma}}(\Omega)}} \,. \tag{16}$$

From (10) and (11) we derive the following estimates for the numerator and denominator on the right-hand side of (16) (the second estimate essentially uses the fact that $\alpha \in [1, n - 2s + 3)$):

$$\int_{\Omega} \frac{|\Phi_{\varepsilon}(x)|^{2^*_{\sigma}}}{|x|^{(s-\sigma)2^*_{\sigma}}} dx = 1 - \mathscr{A}_1(\varepsilon) \cdot (1 + o_{\varepsilon}(1) + o_{\delta}(1)), \tag{17}$$

$$\mathscr{E}_{s}[w_{\varepsilon}] = \mathscr{S}^{Sp}_{s,\sigma}(\mathbb{R}^{n}_{+}) + \mathscr{A}_{2}(\varepsilon) \cdot (1 + o_{\varepsilon}(1) + o_{\delta}(1)) - \frac{2\mathscr{S}^{Sp}_{s,\sigma}(\mathbb{R}^{n}_{+})}{2^{*}_{\sigma}}\mathscr{A}_{1}(\varepsilon) \cdot (1 + o_{\varepsilon}(1)), \qquad (18)$$

where $\mathscr{A}_1(\varepsilon), \mathscr{A}_2(\varepsilon) < 0$ and, for fixed δ and $\varepsilon \to 0$,

$$\mathscr{A}_1(\varepsilon) \sim C_1 \varepsilon^{-1} f(\varepsilon), \quad \mathscr{A}_2(\varepsilon) \sim C_2 \varepsilon^{-1} f(\varepsilon), \qquad C_1, C_2 > 0.$$

Therefore, for sufficiently small δ and ε , we have

$$\mathcal{I}_{\sigma}[\Phi_{\varepsilon}(x)] \leqslant \frac{\mathscr{S}_{s,\sigma}^{Sp}(\mathbb{R}^{n}_{+}) + \mathscr{A}_{2}(\varepsilon) \cdot (1 + o_{\varepsilon}(1) + o_{\delta}(1)) - \frac{2\mathscr{S}_{s,\sigma}^{S,\rho}(\mathbb{R}^{n}_{+})}{2^{*}_{\sigma}} \mathscr{A}_{1}(\varepsilon) \cdot (1 + o_{\varepsilon}(1))}{(1 - \mathscr{A}_{1}(\varepsilon) \cdot (1 + o_{\varepsilon}(1) + o_{\delta}(1)))^{2/2^{*}_{\sigma}}} \\ = \mathscr{S}_{s,\sigma}^{Sp}(\mathbb{R}^{n}_{+}) + \mathscr{A}_{2}(\varepsilon) \cdot (1 + o_{\varepsilon}(1) + o_{\delta}(1)) < \mathscr{S}_{s,\sigma}^{Sp}(\mathbb{R}^{n}_{+}).$$

Thus, (15) is not fulfilled and a minimizer exists, which proves Theorem 3.

Funding

Supported by RFBR grant 17-01-00678a.

References

- [1] L. Caffarelli and L. Silvestre, Comm. Partial Differential Equations, 32:7–9 (2007), 1245–1260.
- [2] A. Capella, J. Dávila, L. Dupaigne, and Y. Sire, Comm. Partial Differential Equations, 36:8 (2011), 1353–1384.
- [3] A. Cotsiolis and N. K. Tavoularis, J. Math. Anal. Appl., 295:1 (2004), 225–236.
- [4] H. Egnell, Trans. Amer. Math. Soc., **330**:1 (1992), 191–201.
- [5] N. Ghoussoub and F. Robert, Geom. Funct. Anal., 16:6 (2006), 1201–1245.
- [6] I. W. Herbst, Comm. Math. Phys., **53**:3 (1977), 285–294.
- [7] P.-L. Lions, Ann. Inst. H. Poincaré, Anal. Nonlin., 1 (1984), 109–145, 223–283.
- [8] P.-L. Lions, Rev. Mat. Iberoamericana, 1 (1985), 45–121, 145–201.
- [9] R. Musina and A. I. Nazarov, Nonlin. Analysis, Theory Methods Appl., 178 (2019), 32–40.
- [10] R. Musina and A. I. Nazarov, Comm. Partial Differential Equations, 39:9 (2014), 1780–1790.
- [11] R. Musina and A. I. Nazarov, ESAIM: Control. Optim. Calc. Var., 22:3 (2016), 832–841.
- [12] R. Musina and A. I. Nazarov, Nonlin. Analysis, Theory Methods Appl., **121** (2015), 123–129.
- [13] R. Musina and A. I. Nazarov, Adv. Calc. Var., 2018; DOI: https://doi.org/10.1515/ acv-2018-0020.
- [14] P. R. Stinga and J. L. Torrea, Comm. Partial Differential Equations, 35:11 (2010), 2092–2122.
- [15] J. Yang, Nonlin. Analysis, Theory Methods Appl., **119** (2015), 179–185.
- [16] A. V. Demyanov and A. I. Nazarov, Zap. Nauch. Semin. POMI, **336** (2006), 25–45; English transl.: J. Math. Sci., **143**:2 (2007), 2857–2868.
- [17] V. P. Il'in, Mat. Sb., **54(96)**:3 (1961), 331–380.
- [18] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Equations of Elliptic Type [in Russian], Nauka, Moscow, 1973; English transl. of 1st ed.: Academic Press, New York– London, 1968.
- [19] A. I. Nazarov, Probl. Math. Anal., **31** (2005), 39–46; English transl.: J. Math. Sci., **132**:4 (2006), 419–427.

ST.-PETERSBURG STATE UNIVERSITY, ST.-PETERSBURG, RUSSIA e-mail: ustinns@yandex.ru

Translated by N. S. Ustinov