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ABSTRACT: The smallest number of edges forming an n-uniform hypergraph which is not r-
colorable is denoted by m(n, r). Erdős and Lovász conjectured that m(n, 2) = � (n2n). The best
known lower bound m(n, 2) = �

(√
n/ ln(n)2n

)
was obtained by Radhakrishnan and Srinivasan in

2000. We present a simple proof of their result. The proof is based on the analysis of a random greedy
coloring algorithm investigated by Pluhár in 2009. The proof method extends to the case of r-coloring,
and we show that for any fixed r we have m(n, r) = �

(
(n/ ln(n))(r−1)/r rn

)
improving the bound of

Kostochka from 2004. We also derive analogous bounds on minimum edge degree of an n-uniform
hypergraph that is not r-colorable. © 2014 Wiley Periodicals, Inc. Random Struct. Alg., 47, 407–413, 2015
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1. INTRODUCTION

A hypergraph is a pair (V , E), where V is a set of vertices and E is a family of subsets of
V . Hypergraph is n-uniform if all its edges have exactly n elements. Hypergraph (V , E) is
r-colorable if there exists a coloring of vertices with r colors in which no edge is mono-
chromatic (i.e., there exists a function c : V → {1, . . . , r} such that the image of every edge
has at least two elements). Hypergraph has property B if it is two-colorable. For n, r ∈ N let
m(n, r) be the smallest number of edges of an n-uniform hypergraph that is not r-colorable.
The asymptotic behaviour of m(n) = m(n, 2) was first studied by Erdős. In [1] and [2]
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Erdős proved that:

2n−1 ≤ m(n) ≤ (1 + o(1))
e ln 2

4
n22n.

In [3] Erdős and Lovász wrote that “perhaps n2n is the correct order of magnitude of m(n)”.
The upper bound has not been improved since. The most recent improvement on the lower
bound was obtained by Radhakrishnan and Srinivasan in [7]. We present a simple proof of
their main theorem:

Theorem 1 ([7]).

m(n) = �

((
n

ln(n)

)1/2

2n

)
.

In fact we prove that, for c <
√

2 and all sufficiently large n, whenever an n-uniform
hypergraph has at most c

√
n/ ln(n)2n−1 edges, then a simple random greedy algorithm

produces a proper coloring with positive probability. The same coloring procedure was
considered by Pluhár in [5]. In an elegant and straightforward way he proved that for some
specific constant c > 0 a bound m(n) > cn1/42n is valid for all n > 1.

The proof technique extends easily to the more general case of r-coloring (very
much along the lines of development of Pluhár [5]). To avoid technicalities we focus on
asymptotics of m(n, r) for a fixed r and n tending to infinity.

Theorem 2. For any fixed integer r ≥ 2, we have

m(n, r) = �

((
n

ln(n)

) r−1
r

rn

)
.

This improves the bounds of Kostochka [4] which are of the order ( n
ln(n)

)
�log2(r)�

�log2(r)�+1 rn

and the bound m(n, 3) = �(n1/23n−1) by Shabanov [9]. Several other variants of extremal
problems on hypergraph coloring can be found in a survey by Raigorodskii and Shabanov
[8].

Just like the results from [7] our results extend to a local version. Let D(n, r) be the
maximum number such that every n-uniform hypergraph with strictly smaller edge degrees
is r-colorable.

Theorem 3. For any fixed r ≥ 2 we have

D(n, r) = �

((
n

ln(n)

) r−1
r

rn

)
.

All results are derived from the analysis of a random greedy r-coloring procedure
presented as Algorithm 1.

Random value t(v) assigned by the algorithm to a vertex v will be called a birth time of
v. We assume that the birth time assignment function sampled by the algorithm is injective
(this happens with probability 1). For any edge f , the first (resp. last) vertex of f is the
vertex v ∈ f with smallest (largest) birth time.
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Algorithm 1: Random greedy r-coloring

1 foreach v ∈ V do
2 choose uniformly and independently at random a point t(v) from the interval

[0, 1]
3 let (v1, . . . , vm) be V ordered according to t(v) (i.e. t(vi) ≤ t(vi+1))
4 for i = 1 . . . m do
5 if ∃j∈{1,...,r} such that coloring vi with j does not create a monochromatic edge

with its highest-index vertex being vi then
6 c(vi) ← smallest such j
7 else
8 c(vi) ← r
9 return c

2. PROPERTY B

Proof of Theorem 1. Let (V , E) be an n-uniform hypergraph with k2n−1 edges. Let us
consider Algorithm 1 with r = 2. Following a long tradition, we call colors 1, 2 respectively
blue and red. Then the rule of assigning colors used by the algorithm reduces to “choose
color blue unless the currently colored vertex is the last vertex of a blue edge.” Every pair
of edges (e, f ) such that the last vertex of e is the first vertex of f will be called a conflicting
pair.

Clearly there are no monochromatic blue edges in the coloring constructed by the algo-
rithm. Suppose that some edge f is colored red, and let v be the first vertex of f . Vertex v
has been colored red by the algorithm, so there exists an edge e, such that v is the last vertex
of e. Edges (e, f ) form a conflicting pair. By the above discussion if there are no conflicting
pairs under the assignment t, then the coloring produced by the algorithm is proper. We
are going to check for which values of k the probability of having no conflicting pairs is
positive.

Let us divide real interval [0, 1] into three subintervals B = [
0, 1−p

2

)
, P =[ 1−p

2 , 1+p
2

)
, R = [ 1+p

2 , 1
]

(with parameter p to be optimized later). We consider three events:

B: there exists a conflicting pair with a common vertex in B,
P: there exists a conflicting pair with a common vertex in P,
R: there exists a conflicting pair with a common vertex in R.

Clearly Pr[B] = Pr[R] and they are both smaller than the probability that there exists an
edge such that all its vertices have birth times from interval B. The expected number of such
edges is k2n−1(

1−p
2 )n, hence:

Pr[B ∪ R] ≤ Pr[B] + Pr[R] = 2 Pr[B] ≤ k2n

(
1 − p

2

)n

= k(1 − p)n. (2.1)

A pair of edges (e, f ) with exactly one common vertex is called dangerous. Only danger-
ous pairs can be conflicting. The probability that there exists a conflicting pair with common
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vertex in P is bounded from above by the expected number of such pairs:

Pr[P] ≤ E[� conflicting pairs with a common vertex in P]
≤ (k2n−1)2 Pr[dangerous pair (e,f) is conflicting with a common vertex in P]

≤ (k2n−1)2

∫ 1+p
2

1−p
2

xn−1(1 − x)n−1dx = k2

∫ p
2

− p
2

((1 + 2x)(1 − 2x))n−1 dx

The integrand function is smaller than 1, so the length of the integration interval is an upper
bound for the value of the integral. We get

Pr[P] ≤ k2p. (2.2)

Inequalities (2.1) and (2.2) give:

Pr[B ∪ R ∪ P] ≤ Pr[B ∪ R] + Pr[P] ≤ k(1 − p)n + k2p.

Hence, whenever the following inequality holds

k(1 − p)n + k2p < 1, (2.3)

the algorithm produces a proper coloring with positive probability.
Let kn = c

√
n/ ln(n) and pn = ln(n/kn)/n. Then

lim
n→∞

(
kn(1 − pn)

n + k2
npn

) = c2/2.

Therefore for any c <
√

2 and all sufficiently large n, any n-uniform hypergraph with at
most c

√
n/ ln(n)2n−1 edges has property B.

3. r - COLORING

Proof of Theorem 2. Let (V , E) be an n-uniform hypergraph with k rn−2 edges. We analyse
the probability that Algorithm 1 working with r colors produces a proper coloring of the
hypergraph. Analogously to the developments of Pluhár [5] we focus on avoiding specific
structures called conflicting r-chains.

A sequence of edges (f1, . . . , fr) is called an r-chain if |fi ∩ fi+1| = 1 for each i ∈
{1, . . . , r − 1}, and fi ∩ fj = ∅ for all i, j ∈ {1, . . . r} such that |i − j| > 1. An r-chain
is conflicting under birth time assignment t if for each i ∈ {1, . . . , r − 1} the last vertex
of fi is the first vertex of fi+1. It is easy to check that all monochromatic edges in the
coloring constructed by the algorithm have color r and every such edge is the last edge of
some conflicting r-chain. Therefore, if there are no conflicting r-chains, then the coloring
produced by the algorithm is proper.

Let us set p = 2 ln(n)

n . The length of an edge f ∈ E (under the assignment t) is the
minimum length of an interval containing all the birth times of the vertices of f . An edge is
short if its length is smaller than 1−p

r , otherwise the edge is long. The expected number of
short edges is smaller than

k rn−2 n

(
1 − p

r

)n−1

∼ k

r n
. (3.1)

Random Structures and Algorithms DOI 10.1002/rsa
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Next we estimate the probability of observing a conflicting r-chain in which no edge is
short. Let F = (f1, . . . , fr) be an r-chain, and x1, . . . , xr−1 be vertices such that fi ∩fi+1 = {xi}.
Observe that for F to be conflicting without short edges, the birth time of each xi must
belong to the interval [ i−ip

r , i+(r−i)p
r ] (otherwise the average length of edges to the left or to

the right would be smaller than 1−p
r ). The probability that vertices x1, . . . , xr−1 have birth

times in corresponding intervals is pr−1. Once those birth times are fixed, the probability that
remaining vertices of the chain fall into appropriate intervals is smaller than (for convenience
we put t(x0) = 0, t(xr) = 1)

r−1∏
i=0

(t(xi+1) − t(xi))
n−2.

Since the sum of differences in the product is 1, the product is maximized when t(xi+1) −
t(xi) = 1/r for all i ∈ {0, . . . , r − 1}. Hence the probability that an r-chain is conflicting
is less than pr−1r−r(n−2). As a consequence the expected number of conflicting r-chains
without short edges is less than

2

r! (k rn−2)rpr−1r−r(n−2) = 2

r!kr

(
2 ln(n)

n

)r−1

. (3.2)

For k < ( n
2 ln(n)

)
r−1

r , that number is smaller than 2
r! . Moreover, if n is large enough, then

the expected number of short edges (3.1) is close to zero. In those cases the algorithm
produces a proper r-coloring with positive probability and the theorem follows.

Corollary 4. If there exists a birth time assignment which makes no short edge and creates
no conflicting r-chain of long edges, then Algorithm 1, working with r colors, produces a
proper coloring with positive probability (at least the probability of sampling such birth
time assignment).

4. LOCAL VERSION

Proof of Theorem 3. Let H = (V , E) be an n-uniform hypergraph with maximum edge
degree D − 1. To derive sufficient condition for H to be r-colorable we apply Lovász Local
Lemma to prove that there exists a birth time assignment avoiding short edges and conflicting
r-chains of long edges. Then, by Corollary 4, Algorithm 1 working with r colors produces a
proper coloring with positive probability. For a birth assignment function t chosen uniformly
at random (as in Algorithm 1) let us consider the following events:

(1) let Sf be the event that edge f is short,
(2) let Cs be the event that an r-chain s consists of only long edges and is conflicting.

The values of P1 = Pr(Sf ) and P2 = Pr(Cf ) were analysed in Section 3. Clearly every
event Sf is independent of all events Se and Cs for e and s disjoint from f (analogously for
events Cs). Every edge intersects at most D edges and rDr different r-chains. Similarly an
r-chain intersects at most rD edges and r2Dr r-chains. Therefore it is sufficient to exhibit
x, y ∈ [0, 1) for which:

P1 ≤ x(1 − x)D(1 − y)rDr
and P2 ≤ y(1 − x)rD(1 − y)r2Dr

Random Structures and Algorithms DOI 10.1002/rsa



412 CHERKASHIN AND KOZIK

to conclude from Lovász Local Lemma that there exists a birth time assignment function
which avoids short edges and conflicting r-chains of long edges. Choosing x = 1 − e−a/D

and y = 1 − e−b/(rDr ) the right hand sides of the inequalities become xe−(a+b) and
ye−r(a+b). A tedious and standard calculation, that we omit here, shows that it is possi-
ble to choose positive a, b, c so that the inequalities are satisfied for all large enough n and
D < c( n

ln(n)
)(r−1)/rrn.

5. REMARKS

(1) Inequality (2.3) is exactly the inequality optimized in [7].
(2) The optimal value for p in the case of 2-coloring has the following interpretation.

Suppose that the birth time of the last vertex of an edge e is 1−p
2 . Then conditional

expected number of conflicting pairs (e, f ) is at most k2n−1n−1(
1+p

2 )n−1, which tends
to 1 with n, for chosen k and p.

(3) The birth times of vertices are used in Algorithm 1 only to generate an ordering of V .
Therefore the same results apply to an algorithm which instead chooses uniformly at
random a permutation of V .

(4) Careful analysis of the algorithm which chooses random permutation can give essen-
tially better bound when the number of vertices is sufficiently small. In particular,
considered algorithms are never worse than choosing equitable an partition of ver-
tices into color classes. As observed in [6] for |V | = O(n2/ ln(n)) the last strategy
with positive probability constructs a proper 2-coloring of hypergraphs with at most
�(n2n) edges.

(5) The presented analysis of Algorithm 1 shows that within some intervals the ordering
of vertices is irrelevant (e.g. in intervals B, R for 2-coloring). It suggests an equivalent
variant of the algorithm which first chooses vertices which fall into these intervals,
color these vertices accordingly, and then use random greedy coloring for the remain-
ing ones. Those two phases can be considered as precoloring and random alteration.
For 2-coloring it closely resembles the algorithm of Radhakrishnan and Srinivasan
from [7] (especially the simplification by Boppana mentioned in the paper).

(6) Random greedy coloring algorithm easily translates to a streaming framework
analysed in [6].
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