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a b s t r a c t

This paper studies the quantity p(n, r), that is theminimal number of edges of an n-uniform
hypergraph without panchromatic coloring (it means that every edge meets every color)
in r colors. If r ≤ c n

ln n then all bounds have a type A1(n, ln n, r)( r
r−1 )

n
≤ p(n, r) ≤

A2(n, r, ln r)( r
r−1 )

n, where A1, A2 are some algebraic fractions. The main result is a new
lower bound on p(n, r) when r is at least c

√
n; we improve an upper bound on p(n, r) if

n = o(r3/2).
Also we show that p(n, r) has upper and lower bounds depending only on n/r when the

ratio n/r is small, which cannot be reached by the previous probabilistic machinery.
Finally we construct an explicit example of a hypergraph without panchromatic color-

ing and with ( r
r−1 + o(1))n edges for r = o(

√ n
ln n ).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A hypergraph is a pair (V , E), where V is a finite set whose elements are called vertices and E is a family of subsets of
V , called edges. A hypergraph is n-uniform if every edge has size n. A vertex r-coloring of a hypergraph (V , E) is a map
c : V → {1, . . . , r}.

An r-coloring of vertices of a hypergraph is called panchromatic if every edge contains a vertex of every color. The problem
of the existence of a panchromatic coloring of a hypergraphwas stated in the local form by P. Erdős and L. Lovász in [4]. They
proved that if every edge of an n-uniform hypergraph intersects at most rn−1/4(r − 1)n other edges then the hypergraph
has a panchromatic r-coloring. Then A. Kostochka in [7] stated the problem in the present form and linked it with the
r-choosability problem using ideas by P. Erdős, A.L. Rubin and H. Taylor from [5]. Also A. Kostochka and D.R. Woodall [9]
found some sufficient conditions on a hypergraph to have a panchromatic coloring in terms of Hall ratio. Reader can find a
survey on history and results on the related problems in [8,11].

1.1. Upper bounds

Using the results from [1] A. Kostochka proved [7] that for some constants c1, c2 > 0
1
r
ec1

n
r ≤ p(n, r) ≤ rec2

n
r . (1)

In works [13,14] D. Shabanov gives the following upper bounds:

p(n, r) ≤ c
n2 ln r
r2

(
r

r − 1

)n

, if 3 ≤ r = o(
√
n), n > n0;
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p(n, r) ≤ c
n3/2 ln r

r

(
r

r − 1

)n

, if r = O(n2/3) and n0 < n = O(r2); (2)

p(n, r) ≤ c max
(
n2

r
, n3/2

)
ln r
(

r
r − 1

)n

for all n, r ≥ 2.

Let us introduce the quantity p′(n, r) that is the minimal number of edges in an n-uniform hypergraph H = (V , E) such
that any subset of vertices V ′

⊂ V with |V ′
| ≥

⌈ r−1
r |V |

⌉
contains an edge.

Note that by pigeonhole principle every vertex r-coloring contains a color of size at most
⌊ 1

r |V |
⌋
. So the complement to

this color has size at least |V | −
⌊ 1

r |V |
⌋

=
⌈ r−1

r |V |
⌉
. Hence, p(n, r) ≤ p′(n, r). This argument is in the spirit of the standard

estimation of the chromatic number via the independence number.
The following theorem gives better upper bound in the case when n = o(r3/2).

Theorem 1.1. The following inequality holds for every n ≥ 2, r ≥ 2

p′(n, r) ≤ c
n2 ln r

r

(
r

r − 1

)n

.

It immediately implies

p(n, r) ≤ c
n2 ln r

r

(
r

r − 1

)n

.

1.2. Lower bounds

We start by noting that an evident probabilistic argument gives p(n, r) ≥
1
r (

r
r−1 )

n. This gives lower bound (1)with c1 = 1.
This was essentially improved by D. Shabanov in [13]:

p(n, r) ≥ c
1
r2

( n
ln n

)1/3( r
r − 1

)n

for n, r ≥ 2, r < n.

Next, A. Rozovskaya and D. Shabanov [12] showed that

p(n, r) ≥ c
1
r2

√
n

ln n

(
r

r − 1

)n

for n, r ≥ 2, r ≤
n

2 ln n
.

Using the Alterations method (see Section 3 of [2]) we can get the following lower bound for all the range of n, r . It gives
better results when r ≥ c

√
n.

Theorem 1.2. For n ≥ r ≥ 2 holds

p(n, r) ≥ e−1 r − 1
n − 1

e
n−1
r−1 .

There is a completely different way to get almost the same bound. First, we need to prove intermediate bound. It is based on
the geometric rethinking of A. Pluhár’s ideas [10].

Theorem 1.3. For n ≥ r ≥ 2 such that r ≤ c n
ln n holds

p(n, r) ≥ c max
(
n1/4

r
√
r
,

1
√
n

)(
r

r − 1

)n

.

Combining Theorems 1.2 and 1.3 we prove the following theorem.

Theorem 1.4. For n ≥ r ≥ 2 such that
√
n ≤ r ≤ c ′ n

ln n holds

p(n, r) ≥ c
r
n
e

n
r .

Remark 1.5. Theorem 1.3, unlike Theorems 1.2 and 1.4, admits a local version.
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1.3. Small n/r

Consider the case when the ratio n/r is small; n/r = const is a good model case. In the case n
r ≤ c ln n the best upper

bound was recn/r [7], where c ≥ 4 is a constant. Using the following theorem we give a bound depending only on n/r .

Theorem 1.6. The following inequality holds for every integer triple m, n, r

p(mn,mr) ≤ p′(n, r).

As a corollary of Theorem 1.6 and an evident inequality max(p(n, r), p(n + 1, r + 1)) ≤ p(n + 1, r) we get a better upper
bound, for the case of small n/r .

Corollary 1.7. The following inequality holds for every integer k ≤ r

p(n, r) ≤ p′

(⌈
n

r − k + 1

⌉
k, k

)
.

In particular, if n < r2 one can put k := α n
r and get p(n, r) ≤ c( nr )

2 ln n
r · e

n
r .

There was no known lower bound in this case (all the previous methods give something less than 1). Theorem 1.2 covers
this gap, but note also that there exists a very simple greedy algorithm.

Proposition 1.8. The following inequality holds for every integer n ≥ r

p(n, r) ≥

⌊n
r

⌋
.

Proof of Proposition 1.8. Consider a hypergraph H = (V , E) with |E| ≤ ⌊n/r⌋. Let us pick an edge e ∈ E and color its
arbitrary r vertices in different colors. Then delete e and all colored vertices from H . The remaining hypergraph has |E| − 1
edge, and the size of every edge is at least n − r . We can do this procedure ⌊n/r⌋ times showing the claim. □

1.4. Explicit constructions

Recently, H. Gebauer [6] gave an explicit example of an n-uniform hypergraph with chromatic number r + 1 and with
(r + o(1))n edges for a constant r . We modify this example to the case of panchromatic colorings.

Theorem 1.9. Let r = o(
√ n

ln n ). There is an explicit construction of an n-uniform hypergraph H = (V , E) without panchromatic
r-coloring and such that

|E(H)| =

(
r

r − 1
+ o(1)

)n

.

2. Proofs

The following proof is just a rephrasing of the proof by P. Erdős [3].

Proof of Theorem 1.1. Consider a vertex set V of size |V | = n2. Let us construct a hypergraph H = (V , E) by random
(uniformly and independently) choosing an edge m := c n2 ln r

r ( r
r−1 )

n times. We can choose an edge multiple times during
this process, but in this case the total number of i.e. |E| ≤ m.

Let us fix a subset of vertices V ′
⊂ V of size |V ′

| =
⌈ r−1

r |V |
⌉
. Denote the probability that a random edge is a subset of V ′

by p. Obviously,

p =

(
|V ′

|

n

)(
|V |

n

) =

n−1∏
i=0

⌈ r−1
r n2

⌉
− i

n2 − i
≥

(⌈ r−1
r n2

⌉
− n

n2 − n

)n

≥

(⌈ r−1
r n2

⌉
− 2

⌈ r−1
r n
⌉

n(n − 1)

)n

= e
(
r − 1
r

)n

(1 + o(1)).

The probability thatV ′ does not contain an edge is equal to (1−p)m. The total number of such setsV ′ is
( n2

⌈(r−1)n2/r⌉

)
=
( n2

⌊n2/r⌋

)
.

If
( n2

⌈(r−1)n2/r⌉

)
(1 − p)m < 1 then a hypergraph realizing the inequality p′(n, r) ≤ m exists with positive probability. One can
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see that(
n2⌊

n2/r
⌋)(1 − p)m ≤

n2
⌊
n2/r

⌋
⌊
n2/r

⌋
!
e−pm

= ec ln r
⌊
n2/r

⌋
−e
(
r−1
r

)n
m
.

So form = c n2 ln r
r ( r

r−1 )
n the claim is proved. □

Proof of Theorem 1.2. Let H = (V , E) be a given hypergraph with

|E| ≤ e−1 r − 1
n − 1

e
n−1
r−1 .

We should show that H has a panchromatic coloring.
Consider a uniform independent coloring of the vertex set with a > r colors. The expectation of the number of such pairs

(e, q) that edge e ∈ E has no color q is |E|a( a−1
a )n. So, if |E|a( a−1

a )n < a − r , then with positive probability there are r colors
such that they are contained in every edge. Substituting a =

(n−1)
n−r r one has that for

|E| ≤
r − 1
n − 1

(
nr − r
nr − n

)n

≤ e−1 r − 1
n − 1

e
n−1
r−1

a panchromatic coloring exists. □

Proof of Theorem 1.3. Let H = (V , E) be a given hypergraph with

|E| ≤ c max
(
n1/4

r
√
r
,

1
√
n

)(
r

r − 1

)n

.

We should show that H has a panchromatic coloring.
Consider the (r − 1)-dimensional regular simplex with the unit distance between vertices, and let us map every vertex

of H to the 1-face skeleton (edges of the simplex) according to the uniform measure and independently; call ρ the inner
metric on the skeleton. Then let us fix a bijection f between the colors and the vertices of the simplex. We are going to color
the hypergraph in the following way: for every edge e of the hypergraph and every color i, we give color i to the ρ-nearest
vertex of edge e (with probability 1 it is unique; let us call it vi(e)) to the vertex f (i) of the simplex. If the coloring is not
self-contradictory then it is obviously panchromatic.

Let us evaluate the probability of such contradiction. We are going to show that such probability is less than 1 showing
the claim. Let us call a bad event of the first type, the event that for some edge e ∈ E and some color i the vertex vi(e) does not
lie on the adjacent to f (i) edge of the simplex. The probability of this event is

( r−2
r

)n
. Summing up over all edges and colors

we get Poly(r, n)
( r
r−1

)n( r−2
r

)n
= Poly(r, n)

( r−2
r−1

)n
which tends to zero if r ≤ c n

ln n .
Now let us go to bad events of the second type, i.e. the events that there is a vertex x such that it should have color i and

j simultaneously (let us call x a conflict vertex). Consider a pair of edges (e1, e2) ∈ E2; denote the size of their intersection
by t := |e1 ∩ e2|. We will estimate the probability (denote it by q = q(t)) that e1 and e2 demand to color a conflict vertex
x ∈ e1 ∩ e2 in different colors, and then sum up over all pairs of edges. The case e1 = e2 (i.e. t = n) corresponds to the event
that the coloring is contradictory even on one edge e1.

First, we should choose a conflict vertex x (there are t ways to do it) and a conflict pair of colors (i, j) (there are r(r − 1)/2
ways). Note that x should lie on the edge (f (i), f (j)) of the simplex (this event has the probability 2

(r−1)r ), otherwise we have
already counted them in the bad events of the first type. If dist(x, f (i)) = a, then dist(x, f (j)) = 1 − a. Since x is the nearest
vertex to f (i) in the edge e1 any vertex y ∈ e1 cannot lie in the union of r − 1 segments of length a with endpoint f (i).
Analogously, any vertex z ∈ e2 cannot lie in the union of r − 1 segments of length 1 − a with endpoint f (j). So any vertex
w ∈ e1 ∩ e2 cannot lie in both forbidden sets (note that the forbidden sets have empty intersection). So for fixed a the
conditional probability is(

r − 2
r

)t−1(
1 −

2a
r

)n−t(
1 −

2 − 2a
r

)n−t

.

Summing up, we have

q = t
(r − 1)r

2
2

(r − 1)r

(
r − 2
r

)t−1 ∫ 1

0

(
1 −

2a
r

)n−t(
1 −

2 − 2a
r

)n−t

da

= t
(
1 −

1
(r − 1)2

)t−1( r − 1
r

)2(t−1) ∫ 1

0

(
1 −

2a
r

)n−t(
1 −

2 − 2a
r

)n−t

da.
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Put A := te−tr−2
> te−t(r−1)−2

≥ t
(
1 −

1
(r−1)2

)t
≥

1
2 t
(
1 −

1
(r−1)2

)t−1
. Let us show that A ≤ c min(r2, n). Indeed,

A = r2 t
r2
e−tr−2

≤ cr2 and A ≤ t ≤ n, so A ≤ c min(r2, n). Put also

B :=

(
r − 1
r

)2(t−1) ∫ 1

0

(
1 −

2a
r

)n−t(
1 −

2 − 2a
r

)n−t

da.

Obviously, (1 −
2a
r )(1 −

2−2a
r ) ≤ (1 −

1
r )

2, thus B ≤
( r−1

r

)2n−2
. Exchange x = 1 −

2a
r gives

B =

(
r − 1
r

)2(t−1) r
2

∫ 1

1−2/r
xn−t

(
2 −

2
r

− x
)n−t

dx.

After exchange y =
1
2

r
r−1xwe have

B =

(
r − 1
r

)2n−1

22(n−t)+1 r
2

∫ r
2(r−1)

r−2
2(r−1)

yn−t (1 − y)n−tdy,

but this integral is not greater than Euler beta function

B(n − t + 1, n − t + 1) =
1

2(n − t) + 1
1(2(n−t)

n−t

) ≤ c
1

√
n − t

22(t−n).

Summing up, we have B ≤ c r
√
n−t

( r−1
r

)2n
which implies B ≤ c min

(
1, r

√
n

) ( r−1
r

)2n
. Finally,

q ≤ AB ≤ c min(r2, n)min
(
1,

r
√
n

)(
r − 1
r

)2n

= c min
(
n,

r3
√
n

)(
r − 1
r

)2n

.

The total number of such pairs (e1, e2) is |E|
2, so q|E|

2
≤ AB|E|

2
≤

1
2 for a corresponding value of c. Recall that the probability

of bad events of the first type tends to zero, so the union bound shows the claim. □

Proof of Theorem 1.4. Let H = (V , E) be a given hypergraph with

|E| ≤ c
r
n
e

n
r .

We should show that H has a panchromatic coloring.
Put a := r +

r2
n . Since r ≤ c ′ n

ln n , we have a ≤ 2r ≤
c
2

n
ln n , where c is from Theorem 1.3. So we can repeat the proof of

Theorem 1.2.
The probability of the union of the events of the first type still tends to zero very fast. Now let us note that for r ≥

√
nwe

have min
(
n, r3

√
n

)
= n. Hence the expectation of the number of such triples (e1, e2, q) that edges e1, e2 ∈ E conflict on color

q is less than

|E|
2cn
(
a − 1
a

)2n

= c
r2

n
e

2n
r

(
1 −

1

r +
r2
n

)2n

≤ ce2
r2

n
.

Summing up,

E(#bad triples) ≤ c
r2

n
=

a − r
2

.

So by Markov inequality we have

P(#bad triples > a − r) ≤
1
2
.

It means that with positive probability there are r colors such that they are contained in every edge. □

Proof of Theorem 1.6. LetH = (V , E) be a hypergraph realizing the quantity p′(n, r). Put J = (W , F ), whereW := {(v, i)|v ∈

V , 1 ≤ i ≤ m}, F := {∪v∈e,1≤i≤m(v, i)|e ∈ E}. Obviously, J ismn-uniform and |F | = |E|. A subset Av := {(v, i) ∈ W |1 ≤ i ≤ m}

is called a block (note that blocks are disjoint).
Consider an arbitrary coloring of |W | inmr colors. By pigeonhole principle there is a color i such that it appears on atmost⌊

|W |

mr

⌋
=
⌊

|V |

r

⌋
vertices. Hence there are at most

⌊
|V |

r

⌋
blocks with a vertex of color i. Let V ′

⊂ V be a set of such vertices
v ∈ V that the block Av does not contain color i. It has the size at least |V |−

⌊
|V |

r

⌋
=
⌈ r−1

r |V |
⌉
, which implies the existence of

an edge e ∈ E such that e ⊂ V ′. So the corresponding edge of J does not contain color i, hence p(mn,mr) ≤ |F | = p′(n, r). □
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Proof of Corollary 1.7. Obviously,

p(n, r) ≤ p
(
n,
⌊ r
k

⌋
k
)

≤ p
(⌈

n
⌊r/k⌋ k

⌉⌊ r
k

⌋
k,
⌊ r
k

⌋
k
)

,

so by Theorem 1.6 p(n, r) ≤ p′

(⌈
n

⌊r/k⌋k

⌉
k, k

)
≤ p′

(⌈ n
r−k+1

⌉
k, k

)
.

In fact, bound (2) is proved for p′(n, r) (see [13]). So let us put k := α n
r and apply (2). It gives p

(
k2
α

, k
)

≤ c k3 ln k
k

( k
k−1

) k2
α =

ck2 ln k · e
k
α showing the claim. □

Proof of Theorem 1.9. Let us construct a hypergraph H1 = (V1, E1) in the following way. Fix an integer t|n and put
k :=

⌈( r
r−1

)t⌉ n
t , then V := {(i, j)|1 ≤ i ≤ k, 1 ≤ j ≤ rt} = [k] × [rt]. Let the set of edges be

E :=

⋃
A⊂[rt]

⋃
0≤iα<k

α∈A

⋃
B⊂[k]
|B|= n

t

{((β + iα) mod k, α) |α ∈ A, β ∈ B} .

Note that

|E| ≤

(
rt
t

)
kt
(

k
n/t

)
≤ (rt)t

((
r

r − 1

)t n
t

)t(
e
(

r
r − 1

)t
)n/t

≤ (rn)t
(

r
r − 1

)t2

en/t
(

r
r − 1

)n

.

Put t :=
√ n

ln n . Since r = o(
√ n

ln n ), one can give an estimate (rn)t ≤ n2t
= e2t ln n

= eo(n/r). Also,
( r
r−1

)t2
=
( r
r−1

)o(n) and
en/t = eo(n/r). Summing up, |E(H)| ≤

( r
r−1 + o(1)

)n.
Let us show that H has no panchromatic coloring. Suppose the contrary and consider a panchromatic coloring. Call a

color q a minor color for a line [k] × {i} if it has at most
⌊ k

r

⌋
vertices. By pigeonhole principle every line [k] × {i} has a

minor color. Again, by pigeonhole principle there is a set A ⊂ [rt] of lines with the same minor color q such that |A| ≥ t .
Next, for any fixed β the proportion of such {iα}α∈A that {((β + iα) mod k, α) |α ∈ A} has no color q, is at least

( r−1
r

)t
. By

the linearity of expectation there is a choice of {iα}α∈A such that at least k
( r−1

r

)t
=

n
t indices β ∈ B give q-free sets

{((β + iα) mod k, α) |α ∈ A}. So there is an edge without color q, which gives a contradiction. □
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