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Abstract

Intersecting and cross-intersecting families usually appear in extremal combina-
torics in the vein of the Erdős–Ko–Rado theorem. On the other hand, P. Erdős
and L. Lovász in their noted 1975 paper posed problems on coloring intersecting
families as a restriction of classical hypergraph coloring problems to a special class
of hypergraphs. This note deals with the mentioned coloring problems stated for
cross-intersecting families.

1 Introduction

A hypergraph is a pair (V,E), where V is a finite set whose elements are called vertices
and E is a family of subsets of V , called edges. A hypergraph is n-uniform if every edge
has size n.

Definition 1.1. Intersecting family is a hypergraph H = (V,E) such that e ∩ f 6= ∅ for
every e, f ∈ E.

Intersecting families in extremal combinatorics appeared in the paper by P. Erdős,
C. Ko and R. Rado [4], where they determine the maximal number of edges in an n-uniform
intersecting family on a given vertex set. A large branch of extremal combinatorics starts
from the mentioned paper.

Then P. Erdős and L. Lovász in [6] introduced several problems on coloring intersecting
families (cliques in the original notation), i. e. hypergraphs without a pair of disjoint edges.
Obviously, an intersecting family could have chromatic number 2 or 3 only; the main
interest refers to chromatic number 3.
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Definition 1.2. Cross-intersecting family is a hypergraph H = (V,E), equipped by a (not
necessarily disjoint) covering E = A ∪ B by nonempty sets A and B of edges, such that
every a ∈ A intersects every b ∈ B. Slightly abusing proper notation we allow the use of
both H = (V,E) and H = (V,A,B).

Cross-intersecting families were introduced to study maximal and almost-maximal
intersecting families (the notation appears in [14]). The Hilton–Milner theorem [11] uses
this notion to determine the maximal number of edges in an n-uniform intersecting family
with empty common intersection on a given vertex set. The Frankl theorem [7] is a
sharpening of the Hilton–Milner theorem in the case of the bounded maximal vertex
degree of an intersecting family. Recently a general approach to mentioned problems was
introduced by A. Kupavskii and D. Zakharov [13] (the reader can also see it for a survey).

1.1 The chromatic number

A vertex r-coloring of a hypergraph (V,E) is a map c : V → {1, . . . , r}. We are inter-
ested in vertex colorings of cross-intersecting families. Coloring is proper if there are no
monochromatic edges. Chromatic number χ(H) is the minimal number of colors such
that H admits a proper coloring. First, note that a cross-intersecting family could have
an arbitrarily large chromatic number.

Example 1.3. Consider an arbitrary integer r > 1. Consider a hypergraph H0 = (V0, E0)
with chromatic number r. Put A := E0, B := {V0}. Obviously, H := (V0, A,B) is a cross-
intersecting family with chromatic number r.

However, under a natural assumption (note that it holds for any n-uniform hypergraph)
a chromatic number of a cross-intersecting family is bounded.

Proposition 1.4. Let H = (V,A,B) be a cross-intersecting family. Suppose that A and
B both have minimal elements of E, i. e. there are such a ∈ A, b ∈ B that a, b both have
no subedge in H. Then χ(H) 6 4.

Proof. Let us color a∩ b in color 1, a \ b in color 2, b \a in color 3 and all other vertices in
color 4. One can see that the coloring is proper because both a and b have no subedge.

It turns out, that if there is no pair e1, e2 ∈ E such that e1 ⊂ e2 and every edge has
a size of at least 3, then the cross-intersecting family can have chromatic number 2 or 3
only. Moreover, the following theorem holds.

Theorem 1.5. Let H = (V,A,B) be a cross-intersecting family such that there is no pair
e1, e2 ∈ A ∪ B such that e1 ⊂ e2 (i. e. (V,E) is a Sperner system). Then χ(H) 6 3 or
V := {v1, . . . , vm, u1, . . . ul}; B := {{v1, . . . , vm}, {u1, . . . ul}}; A := {{vi, uj} for all i, j}
(modulo A-B symmetry), where m, l > 2.

Corollary 1.6. Let H = (V,A,B) be an n-uniform cross-intersecting family. Then
χ(H) 6 3 or n = 2 and H is a complete graph on 4 vertices.

Corollary 1.7. Let H = (V,A,B) be a cross-intersecting family and min(|A|, |B|) > 3.
Then χ(H) 6 3.
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1.2 Maximal number of edges

It turns out that the maximal number of edges in a “nontrivial” n-uniform intersecting
family is bounded. There are two ways to formalize the notion “nontrivial”. The first one
is to say that χ(H) > 3 (denote the corresponding maximum by M(n)). The second one
says that H is nontrivial if and only if τ(H) = n (denote the corresponding maximum by
r(n)), where τ(H) is defined below.

Definition 1.8. Let H = (V,E) be a hypergraph. The covering number τ(H) (also known
as transversal number or blocking number) of the hypergraph H is the smallest size of a
set A ⊂ V such that every e ∈ E intersects A.

1.2.1 Upper bounds.

Note that M(n) 6 r(n), because if τ(H) < n one can color an arbitrary minimal covering
set in the first color, and the rest vertices in the second, producing a proper 2-coloring.
P. Erdős and L. Lovász proved in [6] that r(n) 6 nn (one can find slightly better bound

in [2, 1]). The best current upper bound is r(n) 6 nne−n
1/4/6 (see [8]). Surprisingly,

we can prove a very similar statement for cross-intersecting families. Let us introduce a
“nontriviality” notion for cross-intersecting families.

Definition 1.9. Let us call a cross-intersecting family H = (V,A,B) critical if

• for any edge a ∈ A and any v ∈ a there is b ∈ B such that a ∩ b = {v};

• for any edge b ∈ B and any v ∈ b there is a ∈ A such that a ∩ b = {v}.

Note that if an n-uniform intersecting family H = (V,E) has τ(H) = n then (V,E,E) is
a critical cross-intersecting family.

Theorem 1.10. Let H = (V,A,B) be a critical cross-intersecting family. Denote

n := max
e∈A∪B

|e|.

Then
max(|A|, |B|) 6 nn.

1.2.2 Lower bounds.

L. Lovász conjectured that M(n) = [(e− 1)n!] (an example was constructed in [6]). This
was disproved by P. Frankl, K. Ota and N. Tokushige [9]. They have provided an explicit
example of an n-uniform hypergraph H with τ(H) = n and at least

c
(n

2

)n−1
(1)

edges. For cross-intersecting families Example 1.16 shows that Theorem 1.10 is tight.
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1.3 The set of the pairwise edge intersection sizes

Definition 1.11. For a hypergraph H = (V,E) let us consider the set of the sizes of
pairwise edge intersections:

Q(H) := {|e1 ∩ e2|, e1, e2 ∈ E}.

Again, P. Erdős and L. Lovász showed that for an n-uniform intersecting family H with
χ(H) = 3 one has 3 6 |Q(H)| for sufficiently large n, but there is no example with
|Q(H)| < n−1

2
. For cross-intersecting families there is a simple example with |Q(H)| = 4.

Theorem 1.12. There is an n-uniform cross-intersecting family H with

Q(H) = {0, 1, 2, n− 1}

and χ(H) = 3.

See Example 1.17 for the proof.

1.4 Examples

Unlike the case of intersecting families there is a method of constructing a large set
of (critical) cross-intersecting families with chromatic number 3, based on percolation.
This method makes it possible to construct a cross-intersecting family from a planar
triangulation, which in turn may be generated by well-known random processes.

Example 1.13. Consider an arbitrary planar triangulation with external face F that has
a size of at least 4. Split F into 4 disjoint connected parts F1, F2, F3, F4. Let A0 be
the set of collections of vertices that form a simple path from F1 to F3; B0 be the set of
collections of vertices that form a simple path from F2 to F4. Finally, let A ⊂ A0, B ⊂ B0

be the sets of all minimal (by the inclusion relation) subsets; H := (V,A,B).
Obviously, χ(H) = 3 (one may see that no example with chromatic number 4 could be

obtained from a planar triangulation).

Remark 1.14. The same procedure can be generalized on the intersecting families as
follows. Consider a planar triangulation with a marked vertex x in the interior. Then
consider all connected vertex subsets, containing a loop around x (x itself is a loop around
x) and a vertex on the external face. Note that every such set intersects all other such
sets. Passing to minimal (by the inclusion relation) sets we got an intersecting hypergraph
with chromatic number 3.

For a given n > 2 there exists an n-uniform cross-intersecting family (not critical)
with chromatic number 3 and an arbitrarily large number of edges.

Example 1.15. Let m be an arbitrary integer number. Put V (H) := {v1, . . . , v2n−1} ∪
{u1, . . . , um}; E(H) := A1 ∪ A2 ∪ B1 ∪ B2, where A1 ∪ B1 is the set of all n-subsets of
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{v1, . . . , v2n−1}, A1 contains edges intersecting {v1, . . . vn−1}, B1 contains edges intersect-
ing {v1, vn, . . . , v2n−3} (so A1 ∩B1 6= ∅),

B2 := {{v1, . . . vn−1, ui} for every i},

A2 := {{v1, vn, . . . , v2n−3, ui} for every i}.
Note that H1 := (V1, A1 ∪ B1) has chromatic number 3, so χ(H) > 3, hence by Corol-
lary 1.6 we have χ(H) = 3.

Let us show that H is a cross-intersecting family. Clearly, since A1, B1 ⊂ V1, every
edge from A1 intersects with every edge from B1. By the definition every edge of A2

contains {v1, . . . vn−1}, so it intersects with every edge from B1; by symmetry the same
holds for B2 and A1. Also every edge from A2 intersects with every edge from B2 at the
point v1.

Example 1.16. Consider an arbitrary n > 2. Let V := {vij | 1 6 i, j 6 n}, A :=
{{vi1, . . . vin} | 1 6 i 6 n}, B := {{v1i1 , v2i2 , . . . , vnin} | 1 6 i1, i2, . . . , in 6 n}. Note
that |A| = n, |B| = nn. Obviously, H := (V,A,B) is a cross-intersecting family and
χ(H) = 3.

Example 1.17 (Proof of Theorem 1.12). Our construction is based on the following
object.

Definition 1.18. A hypergraph is called simple if every two edges share at most one
vertex.

Let us take an (n − 1)-uniform simple hypergraph H0 = (V0, E0) such that χ(H) = 3
(see [6, 12] for constructions). Denote V := V0 t {u1, . . . , un}, B := {{u1, . . . , un}},
A := {e ∪ {ui}|e ∈ E0, 1 6 i 6 n}. By the construction, H is an n-uniform cross-
intersecting family.

Let us show that χ(H) = 3. Suppose the contrary, i.e. there is a 2-coloring of V
without monochromatic edges of A ∪ B. By the definition of H0, every 2-coloring of V0
gives a monochromatic (say, blue) edge e ∈ E0. Then every ui should be red, otherwise
e ∪ {ui} is monochromatic. So {u1, . . . , un} is red, a contradiction.

Note that Q(H0) = {0, 1}, so Q(H) = {0, 1, 2, n− 1}.

2 Proofs

Proof of Theorem 1.5. First, suppose that there is no edge of size 2. We show that in
this case χ(H) 6 3. Consider such a pair a ∈ A, b ∈ B that |a ∪ b| is the smallest. Pick
arbitrary vertices va ∈ a \ b and vb ∈ b \a. Let us color va and vb in color 1, a∪ b \ {va, vb}
in color 2 and the remaining vertices in color 3.

Let us show that this coloring is proper. Since there is no edge of size 2, there is no
edge of color 1. Every edge intersects a or b, so there is no edge of color 3. Suppose that
there is an edge e of color 2. Without loss of generality e ∈ A. Then e ⊂ a ∪ b \ {va}, so
|e ∪ b| < |a ∪ b|, a contradiction.
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Now let us consider the case {u, v} ∈ E(H). We suppose that χ(H) > 3 and show
that H has the claimed structure.

Lemma 2.1. Let the assumptions of Theorem 1.5 holds and let a = {u, v} ∈ A, u ∈ b ∈ B.
Then for every w ∈ B there is the edge {v, w} ∈ E(H) or χ(H) 6 3.

Proof. Suppose that χ(H) > 3. Then for every w ∈ b there is the edge {w, v} ∈ E(H),
otherwise one can color v, w in color 1, b \ w in color 2 and all other vertices in color 3,
producing a proper 3-coloring.

Without loss of generality {u, v} ∈ A. Consider any edge b ∈ B (without loss of
generality u ∈ b). By Lemma 2.1 the edge {v, w} is contained in E(H) for every w ∈ B.
Now let us consider 2 cases.

Case 1. There is w ∈ b such that B contains the edge {v, w}. Then, by Lemma 2.1
(for a = {u, v} and b = {v, w}) we have {u,w} ∈ E(H), so b = {u,w}. Thus H contains
a triangle on {u, v, w} with at least one edge in A and at least one edge in B (?). If H
coincides with the triangle on {u, v, w}, then χ(H) = 3. Otherwise, H contains an edge
e which does not intersect one of the edges {u, v}, {u,w}, {v, w}. So, we can change
denotation as follows: {u, v, w} = {q, r, s}, such that e, {q, r} ∈ B and e ∩ {q, r} = ∅.
Note that one of the edges {q, s}, {r, s} lies in A (without loss of generality it is {q, s}).

By Lemma 2.1 (for a = {q, s} and b = e) E(H) contains the edge {q, t} for every
t ∈ e. If {r, s} ∈ B, then for every t ∈ e \ s one has {q, t} ∈ B. So by Lemma 2.1 (for
a = {q, s} and b = {q, t}) we have the edge {s, t} in E(H), so e = {s, t}, hence H is a
complete graph on 4 vertices, and χ(H) = 4. If {r, s} ∈ A, then by Lemma 2.1 again (for
a = {r, s} and b = e) there is the edge {r, t} for every t ∈ e. Summing up, we have edges
{q, r}, e ∈ B, {q, s} ∈ A and {x, t} ∈ E(H) for every choice x ∈ {q, r} and t ∈ e.

Obviously one can assume that |e| > 2. It means that there are different s, t1, t2 ∈ e.
Note that {r, t1} ∈ A since {q, s} ∈ A, so {q, t2} ∈ A. Thus for every choice x ∈ {q, r} and
t ∈ e, A contains the edge {x, t}. Obviously, every edge of hypergraph either intersects
both {q, r} and e (then it coincides with the edge {x, t}, where x ∈ {q, r} and t ∈ e) or
contains one of them (then it coincides with {q, r} or e). Thus we have listed all the edges
of the hypergraph, so we proved the claim in this case. Note also that the set of colors in
{q, r} does not intersect the set of colors in e, so again χ(H) = 4.

Case 2. All the edges {v, w}, where w ∈ b are contained in A. If |B| = 1, then
χ(H) 6 3, so there is an edge b′ ∈ B, such that it does not contain u. Suppose that
b∩ b′ = ∅. Then for every w ∈ b and t′ ∈ b′ by Lemma 2.1 (for a = {v, w} and b′) we have
edges {w, t′} in E(H). Obviously, all these edges lie in A, otherwise we are done by the
first case (if some {w, t′} ∈ B, then we have {w, v} ∈ A, {w, t′}, b′ ∈ B). Thus, H has
the claimed structure.

Finally, if b ∩ b′ 6= ∅, then by Lemma 2.1 for a = {u, v} and b we have edge {v, t} for
some t ∈ b∩ b′. Then b′ = {v, t}. Analogously, b = {u, t}. So the condition (?) holds, and
we are done.

Proof of Theorem 1.10. First, we need the following definition.
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Definition 2.2. Let H = (V,E) be a hypergraph and W be a subset of V . Define

HW := (V \W, {e \W | e ∈ E}).

Then H is a flower with k petals with core W if τ(HW ) > k.

The following Lemma was proved by J. H̊astad, S. Jukna and P. Pudlák [10]. We provide
its proof for the completeness of presentation.

Lemma 2.3. Let H = (V,E) be a hypergraph; n := maxe∈E |e|. If |E| > (k − 1)n then F
contains a flower with k petals.

Proof. Induction on n. The basis n = 1 is trivial.
Now suppose that the statement is true for n−1 and prove it for n. If τ(H) > k, then

H itself is a flower with at least k petals (and an empty core). Otherwise, some set of
size k − 1 intersects all the edges of H, and hence, at least |E|/(k − 1) of the edges must
contain some vertex x. The hypergraph H{x} = (V{x}, E{x}) has

|E{x}| >
|E|
k − 1

> (k − 1)n−1

edges, each of cardinality at most n − 1. By the induction hypothesis, H{x} contains a
flower with k petals and some core Y . Adding the element x back to the sets in this
flower, we obtain a flower in H with the same number of petals and the core Y ∪{x}.

Now let us prove Theorem 1.10. Suppose the contrary, that is, without loss of gen-
erality, |A| > nn + 1. Then by Lemma 2.3 the hypergraph (V,A) contains a flower with
n + 1 petals. It means that every b ∈ B intersects the core of the flower, and H is not
critical. A contradiction.

3 Open questions

The most famous problem in hypergraph coloring is to determine the minimal number of
edges in an n-uniform hypergraph with χ(H) = 3 (it is usually denoted by m(n)). The
best known bounds ([5, 15, 3]) are

c

√
n

lnn
2n 6 m(n) 6

e · ln 2

4
n22n(1 + o(1)). (2)

P. Erdős and L. Lovász in [6] posed the same question for the class of intersecting families.
Even though the intersecting condition is very strong, it does not provide a better lower
bound. On the other hand, the upper bound in (2) is probabilistic, so it does not work for

intersecting families. The current asymptotically best upper bound [6] is 7
n−1
2 for n = 3k,

which is given by the iterated Fano plane.
Another question is to determine the minimal size a(n) of the largest intersection in

an n-uniform intersecting family. The best bounds at this time are

n

log2 n
6 a(n) 6 n− 2.
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Studying the mentioned problems for cross-intersecting families is also of interest.
Recall that Example 1.16 shows that Theorem 1.10 is tight. On the other hand,

max min(|A|, |B|) over all cross-intersecting families with chromatic number 3 is unknown.
Obviously, one may take the example (V,E) by P. Frankl, K. Ota and N. Tokushige and
put A = B = E to get lower bound (1).
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[6] Paul Erdős and László Lovász. Problems and results on 3-chromatic hypergraphs
and some related questions. Infinite and finite sets, 10(2):609–627, 1975.
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