Notes

On small n-uniform hypergraphs with positive discrepancy

Danila Cherkashin ${ }^{\text {a,b,c }}$, Fedor Petrov ${ }^{\text {d,e }}$
${ }^{\text {a }}$ Chebyshev Laboratory, St. Petersburg State University, 14 th Line V.O., 29B, Saint Petersburg 199178, Russian Federation
${ }^{\mathrm{b}}$ Moscow Institute of Physics and Technology, Lab of advanced combinatorics and network applications, Institutsky lane 9, Dolgoprudny, Moscow region, 141700, Russian Federation
${ }^{\text {c }}$ National Research University Higher School of Economics, Soyuza Pechatnikov str., 16, St. Petersburg, Russian Federation
${ }^{\text {d }}$ Saint Petersburg State University, Faculty of Mathematics and Mechanics, Line 14 of Vasilyevsky island, 29, St. Petersburg, 199178, Russian Federation
${ }^{\text {e }}$ St. Petersburg Department of V. A. Steklov Institute of Mathematics of the
Russian Academy of Sciences, Fontanka 27, St. Petersburg, 191023, Russian Federation

A R T I C L E I N F O

Article history:

Received 17 June 2017
Available online xxxx

Keywords:

Hypergraph colorings
Hypergraph discrepancy
Prescribed matrix determinant

A B S T R A C T

A two-coloring of the vertices V of the hypergraph $H=(V, E)$ by red and blue has discrepancy d if d is the largest difference between the number of red and blue points in any edge. Let $f(n)$ be the fewest number of edges in an n-uniform hypergraph without a coloring with discrepancy 0 . Erdős and Sós asked: is $f(n)$ unbounded?
N. Alon, D. J. Kleitman, C. Pomerance, M. Saks and P. Seymour [1] proved upper and lower bounds in terms of the smallest non-divisor (snd) of n (see (1)). We refine the upper bound as follows:

$$
f(n) \leq c \log \operatorname{snd} n
$$

© 2019 Published by Elsevier Inc.

[^0]
1. Introduction

A hypergraph is a pair (V, E), where V is a finite set whose elements are called vertices and E is a family of subsets of V, called edges. A hypergraph is n-uniform if every edge has size n. A vertex 2-coloring of a hypergraph (V, E) is a map $\pi: V \rightarrow\{1,2\}$.

The discrepancy of a coloring is the maximum over all edges of the difference between the number of vertices of two colors in the edge. The discrepancy of a hypergraph is the minimum discrepancy of a coloring of this hypergraph. The general discrepancy theory is set out in $[2,6,4]$.

Let $f(n)$ be the minimal number of edges in an n-uniform hypergraph (all edges have size n) having positive discrepancy. Obviously, if $2 \nmid n$ then $f(n)=1$; if $2 \mid n$ but $4 \nmid n$ then $f(n)=3$. Erdős and Sős asked whether $f(n)$ is bounded or not. N. Alon, D. J. Kleitman, C. Pomerance, M. Saks and P. Seymour [1] proved the following Theorem, showing in particular that $f(n)$ is unbounded.

Theorem 1.1. Let n be an integer such that $4 \mid n$. Then

$$
\begin{equation*}
c_{1} \frac{\log \operatorname{snd}(n / 2)}{\log \log \operatorname{snd}(n / 2)} \leq f(n) \leq c_{2} \frac{\log ^{3} \operatorname{snd}(n / 2)}{\log \log \operatorname{snd}(n / 2)} \tag{1}
\end{equation*}
$$

where $\operatorname{snd}(x)$ stands for the least positive integer that does not divide x.

To prove the upper bound they introduced several quantities. Let \mathcal{M} denote the set of all matrices M with entries in $\{0,1\}$ such that the equation $M x=e$ has exactly one non-negative solution (here e stands for the vector with all entries equal to 1). This unique solution is denoted x^{M}. Let $z(M)$ be the least integer such that $z(M) x^{M}$ is integer and let $y^{M}=z(M) x^{M}$. For each positive integer n, let $t(n)$ be the least r such that there exists a matrix $M \in \mathcal{M}$ with r rows such that $z(M)=n$ (obviously, $t(n) \leq n+1$ because $z\left(J_{n+1}-I_{n+1}\right)=n$, where J_{n+1} is the $(n+1) \times(n+1)$ matrix with unit entries; I_{n+1} is the $(n+1) \times(n+1)$ identity matrix). The upper bound in (1) follows from the inequality $f(n) \leq t(m)$ for such m that $\left\lfloor\frac{n}{m}\right\rfloor$ is odd.

Then N. Alon and V. H. Vũ [3] showed that $t(m) \leq(2+o(1)) \frac{\log m}{\log \log m}$ for infinitely many m. However they marked that trueness of inequality $t(m) \leq c \log m$ for arbitrary m is not clear.

Our main result is the following

Theorem 1.2. Let n be a positive integer number. Then

$$
\begin{equation*}
f(n) \leq c \log \operatorname{snd}(n) \tag{2}
\end{equation*}
$$

for some constant $c>0$.

Corollary 1.3. Let n be a positive integer number. Then

$$
f(n) \leq c \log \log n,
$$

for some constant $c>0$.

The construction of the hypergraph with positive discrepancy which yields Theorem 1.2 uses a matrix with determinant $\operatorname{snd}(n)$ and small entries satisfying some additional technical properties. Before coming to a general construction we give an example with a specific 2×2 matrix which shows the vague idea.

2. Example

Example 2.1. Let us consider the matrix $A=\left(\begin{array}{ll}3 & 5 \\ 1 & 8\end{array}\right)$ and suppose that n is not divisible on $\operatorname{det} A=19$. Consider the system

$$
\begin{equation*}
A\binom{a}{b}=\binom{n}{n+t} . \tag{3}
\end{equation*}
$$

The solution of the system is $a=(3 n-5 t) / 19, b=(2 n+3 t) / 19$, which is integral if and only if $t=12 n(\bmod 19)$ i.e. t has prescribed residue modulo 19. Since n is not divisible on $19, t$ is not equal to zero modulo 19. So one can choose $-19<t<19$ such that t has prescribed residue modulo 19 and t is odd. Also, assume that $n / 8>t>-2 n / 3$ which is certainly true if $n>200$. Then a and b are positive and also $b>t$ and a, b tend to infinity simultaneously with n.

Let us construct an n-uniform hypergraph H with positive discrepancy. Consider disjoint vertex sets A_{1}, A_{2}, A_{3} of size a and B_{1}, \ldots, B_{8} of size b. If $t<0$ then consider a vertex set T of size $|t|$ and set $C:=B_{1} \cup T$; if $t>0$ let T be a t-vertex subset of B_{1} and define $C:=B_{1} \backslash T$. The edges of H are listed:

$$
\begin{gathered}
A_{1} \cup A_{2} \cup A_{3} \cup B_{1} \cup B_{2} \cup B_{3} \cup B_{4} \cup B_{5} \\
A_{1} \cup A_{2} \cup A_{3} \cup B_{1} \cup B_{2} \cup B_{3} \cup B_{4} \cup B_{6} \\
A_{1} \cup A_{2} \cup A_{3} \cup B_{1} \cup B_{2} \cup B_{3} \cup B_{4} \cup B_{7} \\
A_{1} \cup A_{2} \cup A_{3} \cup B_{1} \cup B_{2} \cup B_{3} \cup B_{4} \cup B_{8} \\
A_{1} \cup A_{2} \cup A_{3} \cup B_{2} \cup B_{3} \cup B_{4} \cup B_{5} \cup B_{8} \\
A_{1} \cup A_{2} \cup A_{3} \cup B_{1} \cup B_{3} \cup B_{4} \cup B_{5} \cup B_{8} \\
A_{1} \cup A_{2} \cup A_{3} \cup B_{1} \cup B_{2} \cup B_{4} \cup B_{5} \cup B_{8} \\
A_{1} \cup A_{2} \cup A_{3} \cup B_{1} \cup B_{2} \cup B_{3} \cup B_{5} \cup B_{8} \\
A_{1} \cup C \cup B_{2} \cup B_{3} \cup B_{4} \cup B_{5} \cup B_{6} \cup B_{7} \cup B_{8}
\end{gathered}
$$

$$
\begin{aligned}
& A_{2} \cup C \cup B_{2} \cup B_{3} \cup B_{4} \cup B_{5} \cup B_{6} \cup B_{7} \cup B_{8} \\
& A_{3} \cup C \cup B_{2} \cup B_{3} \cup B_{4} \cup B_{5} \cup B_{6} \cup B_{7} \cup B_{8} .
\end{aligned}
$$

Obviously, if H has a coloring with discrepancy 0 , then $d\left(B_{5}\right)=d\left(B_{6}\right)$, where $d(X)$ is the difference between blue and red vertices in X, because the second edge can be reached by replacing B_{5} on B_{6} in the first edge. Similarly one can deduce that $d\left(A_{i}\right)=d\left(A_{j}\right)$ and $d\left(B_{i}\right)=d\left(B_{j}\right)$ for all pairs i, j. So one can put $k:=d\left(A_{i}\right), l:=d\left(B_{i}\right)$. Because of the first edge we have $3 k+5 l=0$. Obviously, k and l are odd numbers, so the minimal solution is $k=5, l=-3$ (or $k=-5, l=3$ which is the same because of red-blue symmetry). But then the last edge gives $|k+8 l| \leq|t|$ which contradicts with $|k+8 l| \geq 19>|t|$.

So we got an example if $19 \nmid n$ and $n>200$ of an n-uniform hypergraph with 11 edges and positive discrepancy.

The number of edges in this example equals $11=3+8$, the sum of maximal entries in the columns of A. This is essentially (up to multiplicative constant) the general property of our construction.

3. Proofs

Proof of Theorem 1.2. Let us denote $\operatorname{snd}(n)$ by q. We should construct a hypergraph with at most $c \log q$ edges and positive discrepancy. Take m such that $2^{m}-1 \leq q \leq$ $2^{m+1}-2$. Then

$$
q-\left(2^{m}-1\right)=\sum_{i=0}^{m-1} \varepsilon_{i} 2^{i} \text { for some } \varepsilon_{i} \in\{0,1\}
$$

therefore

$$
q=\sum_{i=0}^{m-1} \eta_{i} 2^{i}, \text { where } \eta_{i}=1+\varepsilon_{i} \in\{1,2\}
$$

Consider m vectors in \mathbb{Z}^{m} :

$$
\begin{gathered}
v_{0}=\left(\eta_{0}, \ldots, \eta_{m-1}\right) \\
v_{i}=\left(\eta_{0}, \ldots, \eta_{i-2}, \eta_{i-1}+2, \eta_{i}-1, \eta_{i+1}, \ldots, \eta_{m-1}\right) \text { for } i=1, \ldots, m-1, \text { i.e. } \\
v_{i, k}= \begin{cases}\eta_{k}, & k \neq i, i-1 \\
\eta_{k}-1, & k=i \\
\eta_{k}+2, & k=i-1\end{cases}
\end{gathered}
$$

Note that the vector $u=\left(1,2, \ldots, 2^{m-1}\right)$ satisfies a system of linear equations

$$
\left\langle v_{i}, u\right\rangle=q ; \quad i=0, \ldots, m-1
$$

Assume that q is odd. Choose odd $\delta \in(-q, q)$ such that $x_{0}:=\frac{n+\eta_{m-1} \delta}{q}$ is integer. Define

$$
x_{i}:=2^{i} x_{0} \text { for } i=1, \ldots, m-2 ; \quad x_{m-1}:=2^{m-1} x_{0}-\delta,
$$

then the vector $x=\left(x_{0}, \ldots, x_{m-1}\right)$ satisfies $\left\langle v_{i}, x\right\rangle=n$ for $i=0, \ldots, m-2,\left\langle v_{m-1}, x\right\rangle=$ $n+\delta$.

In the case $q=2^{m} \geq 8$ we have $n \equiv 2^{m-1}(\bmod q)$ and $\eta_{0}=2, \eta_{1}=\cdots=\eta_{m-1}=1$.
Choose $x=\left(x_{0}, \ldots, x_{m-1}\right)$ so that $\left\langle v_{1}, x\right\rangle=\left\langle v_{m-1}, x\right\rangle=n+1$ and $\left\langle v_{i}, x\right\rangle=n$ for $i=0,2,3, \ldots, m-2$. The solution is given by
$x_{0}:=\frac{n+2^{m-1}}{q} ; x_{1}:=2 x_{0}-1 ; x_{i}:=2^{i-1} x_{1}$ for $i=2, \ldots, m-2 ; x_{m-1}:=2^{m-2} x_{1}-1$.
Now let us construct a hypergraph in the following way: for $i=0, \ldots m-1$ let us take 4 sets $A_{i}^{j}(j=1, \ldots, 4)$ of vertices of size x_{i} such that all $4 m$ sets A_{i}^{j} are disjoint. Let the edge e_{0} be the union of A_{i}^{j} over $0 \leq i \leq m-1$ and $1 \leq j \leq \eta_{i}$. By the choice of x_{i} and η_{i} we have $\left|e_{0}\right|=n$. Then we add an edge

for every k and for every $R \subset[4]$ such that $|R|=\eta_{k}$. Clearly there are at most 6 m such edges. Let us say that they form the first collection of edges. Finally, for every $1 \leq k \leq m-1$ we add the edge

which form the second collection of edges.
Summing up we have hypergraph with at most 7 m edges; at most 2 of them have size not equal to n. Let us correct these edges in the simplest way: if an edge has size less than n then we add arbitrary vertices; if an edge has size greater than n then we exclude arbitrary vertices.

Suppose that our hypergraph has discrepancy 0, so it has a proper coloring π. For every set A_{i}^{j} denote by $d\left(A_{i}^{j}\right)$ the difference between the numbers of red and blue vertices of π in A_{i}^{j}. Obviously, $d\left(A_{i}^{j_{1}}\right)=d\left(A_{i}^{j_{2}}\right)$ because there are edges e_{1}, e_{2} from the first collection such that e_{2} can be obtained from e_{1} by the replacement of $A_{i}^{j_{1}}$ to $A_{i}^{j_{2}}$. So we may write d_{i} instead of $d\left(A_{i}^{j}\right)$.

If q is odd then the vector $d=\left(d_{0}, \ldots, d_{m-1}\right)$ satisfies

$$
\left\langle v_{i}, d\right\rangle=0 \text { for } i=0,1, \ldots, m-2 \text { and }\left\langle v_{m-1}, d\right\rangle=s
$$

for some odd $s \in(-q, q)$. Considering consequent differences of these equations we get

$$
d_{i}=2^{i} d_{0} \quad \text { for } i=0, \ldots, m-2 ; \quad d_{m-1}=2^{m-1} d_{0}-s ; \quad 0=\sum \eta_{i} d_{i}=d_{0} q-\eta_{m-1} s
$$

which fails modulo q. A contradiction. In the case $q=2^{m}$ we get a similar contradiction, as $\left(2^{m-1}-1\right) \pm 1$ is not divisible by 2^{m}.

Thus we get a hypergraph on at most $7 m=O(\log q)$ edges with positive discrepancy, the claim is proven.

4. Discussion

- In fact, during the proof we have constructed a matrix of size of $O(\log k)$ with bounded integer coefficients and with determinant $k:=\operatorname{snd}(n)$. By Hadamard inequality, the determinant k of $m \times m$ matrix with bounded coefficients satisfies $k=$ $O(\sqrt{m})^{m}$, thus $\log k=O(m \log m), m \geq$ const $\cdot \log k / \log \log k$. We suppose that actually a matrix of size $O(\log k / \log \log k)$ with bounded integer coefficients and determinant k always exists; and moreover, it may be chosen satisfying additional properties which allow to replace the main estimate with $f(n) \leq c \log \operatorname{snd}(n) / \log \log \operatorname{snd}(n)$ (which asymptotically coincides with the lower bound).
- It turns out, that for a fixed value of $q=\operatorname{snd}(n)$ and some values of n modulo q, a hypergraph, constructions of above type have the discrepancy separated from zero. In particular, in Example 2.1 the choice $n \in\{ \pm 4, \pm 7\}$ modulo 19 leads to the discrepancy 6.
- For fixed r and large enough n using Theorem 1.2 one can construct an n-uniform hypergraph with discrepancy at least r and $O(\ln \operatorname{snd}[n / r])^{r}$ edges (here $[x]$ stands for the nearest integer to x), as follows: let H_{0} be a hypergraph realizing $f([n / r])$, $H_{1}, \ldots, H_{2 r-1}$ be vertex-disjoint copies of H. Let $V:=V\left(H_{1}\right) \sqcup \cdots \sqcup V\left(H_{2 r-1}\right)$, $E:=\left\{\sqcup e_{i}|i \in A \subset[2 r-1],|A|=r\}\right.$. By the construction, every H_{i} has discrepancy at least 2 ; so by pigeonhole principle (V, E) has discrepancy at least $2 r$. Define $l:=r[n / r]-n$. Finally, if $l>0$, then exclude arbitrary l vertices from every edge $e \in E$; else add arbitrary l vertices to every edge $e \in E$; denote the result by H. By definition $l \leq r$, so the discrepancy of H is at least r. Since $\left|E\left(H_{i}\right)\right|=f([n / r])$, we have

$$
|E(H)|=\binom{2 r-1}{r} f([n / r])^{r}=O(\ln \operatorname{snd}[n / r])^{r} \leq O(\ln \ln n)^{r}
$$

- A. Raigorodskii independently asked the same question in a more general form: he introduced the quantity $m_{k}(n)$ that is the minimal number of edges in a hypergraph without a vertex 2-coloring such that every edge has at least k blue vertices and at least k red vertices. So $m_{k}(n)$ is the minimal number of edges in a hypergraph with discrepancy at least $n-2 k+2$, in particular $f(n)=m_{n / 2}(n)$ for even n.

For the history and the best known bounds on $m_{k}(n)$ see [7]. Note that our result replaces the bound $m_{k}(2 k+r)=O(\ln k)^{r+1}[5]$ with $m_{k}(2 k+r)=O(\ln \ln k)^{r+1}$ for a constant r. It worth noting, that in the case $n=O(k)$ the behavior of $m_{k}(n)$ is completely unclear.

Acknowledgments

The work was supported by the Russian Scientific Foundation grant 16-11-10014. The authors are grateful to A. Raigorodskii for the introduction to the problem, to N. Alon for directing our attention to the paper [1] and fruitful discussions and to N. Rastegaev for a very careful reading of the draft of the paper, and to the anonymous referee for several useful remarks.

References

[1] N. Alon, D.J. Kleitman, K. Pomerance, M. Saks, P. Seymour, The smallest n-uniform hypergraph with positive discrepancy, Combinatorica 7 (2) (1987) 151-160.
[2] Noga Alon, Joel H. Spencer, The Probabilistic Method, John Wiley \& Sons, 2016.
[3] Noga Alon, Văn H. Vũ, Anti-Hadamard matrices, coin weighing, threshold gates, and indecomposable hypergraphs, J. Combin. Theory Ser. A 79 (1) (1997) 133-160.
[4] William Chen, Anand Srivastav, Giancarlo Travaglini (Eds.), A Panorama of Discrepancy Theory, vol. 2107, Springer, 2014.
[5] D.D. Cherkashin, A.B. Kulikov, On two-colorings of hypergraphs, Dokl. Math. 83 (1) (2011) 68-71.
[6] Jiří Matoušek, Geometric Discrepancy: An Illustrated Guide, Springer, 1999.
[7] S.M. Teplyakov, Upper bound in the Erdős-Hajnal problem of hypergraph coloring, Math. Notes 93 (1-2) (2013) 191-195.

[^0]: E-mail addresses: matelk@mail.ru (D. Cherkashin), f.v.petrov@spbu.ru (F. Petrov).
 https://doi.org/10.1016/j.jctb.2019.04.001
 0095-8956/® 2019 Published by Elsevier Inc.

