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A two-coloring of the vertices V of the hypergraph H = (V, E)
by red and blue has discrepancy d if d is the largest difference 
between the number of red and blue points in any edge. 
Let f(n) be the fewest number of edges in an n-uniform 
hypergraph without a coloring with discrepancy 0. Erdős and 
Sós asked: is f(n) unbounded?
N. Alon, D. J. Kleitman, C. Pomerance, M. Saks and P. 
Seymour [1] proved upper and lower bounds in terms of the 
smallest non-divisor (snd) of n (see (1)). We refine the upper 
bound as follows:

f(n) ≤ c log sndn.
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1. Introduction

A hypergraph is a pair (V, E), where V is a finite set whose elements are called vertices 
and E is a family of subsets of V , called edges. A hypergraph is n-uniform if every edge 
has size n. A vertex 2-coloring of a hypergraph (V, E) is a map π : V → {1, 2}.

The discrepancy of a coloring is the maximum over all edges of the difference between 
the number of vertices of two colors in the edge. The discrepancy of a hypergraph is the 
minimum discrepancy of a coloring of this hypergraph. The general discrepancy theory 
is set out in [2,6,4].

Let f(n) be the minimal number of edges in an n-uniform hypergraph (all edges have 
size n) having positive discrepancy. Obviously, if 2 � n then f(n) = 1; if 2|n but 4 � n
then f(n) = 3. Erdős and Sős asked whether f(n) is bounded or not. N. Alon, D. J. 
Kleitman, C. Pomerance, M. Saks and P. Seymour [1] proved the following Theorem, 
showing in particular that f(n) is unbounded.

Theorem 1.1. Let n be an integer such that 4 | n. Then

c1
log snd(n/2)

log log snd(n/2) ≤ f(n) ≤ c2
log3 snd(n/2)

log log snd(n/2) , (1)

where snd(x) stands for the least positive integer that does not divide x.

To prove the upper bound they introduced several quantities. Let M denote the set 
of all matrices M with entries in {0, 1} such that the equation Mx = e has exactly 
one non-negative solution (here e stands for the vector with all entries equal to 1). This 
unique solution is denoted xM . Let z(M) be the least integer such that z(M)xM is integer 
and let yM = z(M)xM . For each positive integer n, let t(n) be the least r such that there 
exists a matrix M ∈ M with r rows such that z(M) = n (obviously, t(n) ≤ n +1 because 
z(Jn+1 − In+1) = n, where Jn+1 is the (n +1) × (n +1) matrix with unit entries; In+1 is 
the (n +1) ×(n +1) identity matrix). The upper bound in (1) follows from the inequality 
f(n) ≤ t(m) for such m that 

⌊
n
m

⌋
is odd.

Then N. Alon and V. H. Vũ [3] showed that t(m) ≤ (2 + o(1)) log m
log log m for infinitely 

many m. However they marked that trueness of inequality t(m) ≤ c logm for arbitrary 
m is not clear.

Our main result is the following

Theorem 1.2. Let n be a positive integer number. Then

f(n) ≤ c log snd(n), (2)

for some constant c > 0.
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Corollary 1.3. Let n be a positive integer number. Then

f(n) ≤ c log logn,

for some constant c > 0.

The construction of the hypergraph with positive discrepancy which yields Theo-
rem 1.2 uses a matrix with determinant snd(n) and small entries satisfying some addi-
tional technical properties. Before coming to a general construction we give an example 
with a specific 2 × 2 matrix which shows the vague idea.

2. Example

Example 2.1. Let us consider the matrix A =
(

3 5
1 8

)
and suppose that n is not divisible 

on detA = 19. Consider the system

A

(
a
b

)
=

(
n

n + t

)
. (3)

The solution of the system is a = (3n − 5t)/19, b = (2n + 3t)/19, which is integral 
if and only if t = 12n (mod 19) i.e. t has prescribed residue modulo 19. Since n is not 
divisible on 19, t is not equal to zero modulo 19. So one can choose −19 < t < 19 such 
that t has prescribed residue modulo 19 and t is odd. Also, assume that n/8 > t > −2n/3
which is certainly true if n > 200. Then a and b are positive and also b > t and a, b tend 
to infinity simultaneously with n.

Let us construct an n-uniform hypergraph H with positive discrepancy. Consider 
disjoint vertex sets A1, A2, A3 of size a and B1, . . . , B8 of size b. If t < 0 then consider a 
vertex set T of size |t| and set C := B1 ∪ T ; if t > 0 let T be a t-vertex subset of B1 and 
define C := B1 \ T . The edges of H are listed:

A1 ∪A2 ∪A3 ∪B1 ∪B2 ∪B3 ∪B4 ∪B5

A1 ∪A2 ∪A3 ∪B1 ∪B2 ∪B3 ∪B4 ∪B6

A1 ∪A2 ∪A3 ∪B1 ∪B2 ∪B3 ∪B4 ∪B7

A1 ∪A2 ∪A3 ∪B1 ∪B2 ∪B3 ∪B4 ∪B8

A1 ∪A2 ∪A3 ∪B2 ∪B3 ∪B4 ∪B5 ∪B8

A1 ∪A2 ∪A3 ∪B1 ∪B3 ∪B4 ∪B5 ∪B8

A1 ∪A2 ∪A3 ∪B1 ∪B2 ∪B4 ∪B5 ∪B8

A1 ∪A2 ∪A3 ∪B1 ∪B2 ∪B3 ∪B5 ∪B8

A1 ∪ C ∪B2 ∪B3 ∪B4 ∪B5 ∪B6 ∪B7 ∪B8
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A2 ∪ C ∪B2 ∪B3 ∪B4 ∪B5 ∪B6 ∪B7 ∪B8

A3 ∪ C ∪B2 ∪B3 ∪B4 ∪B5 ∪B6 ∪B7 ∪B8.

Obviously, if H has a coloring with discrepancy 0, then d(B5) = d(B6), where d(X) is 
the difference between blue and red vertices in X, because the second edge can be reached 
by replacing B5 on B6 in the first edge. Similarly one can deduce that d(Ai) = d(Aj) and 
d(Bi) = d(Bj) for all pairs i, j. So one can put k := d(Ai), l := d(Bi). Because of the first 
edge we have 3k + 5l = 0. Obviously, k and l are odd numbers, so the minimal solution 
is k = 5, l = −3 (or k = −5, l = 3 which is the same because of red-blue symmetry). 
But then the last edge gives |k + 8l| ≤ |t| which contradicts with |k + 8l| ≥ 19 > |t|.

So we got an example if 19 � n and n > 200 of an n-uniform hypergraph with 11
edges and positive discrepancy.

The number of edges in this example equals 11 = 3 +8, the sum of maximal entries in 
the columns of A. This is essentially (up to multiplicative constant) the general property 
of our construction.

3. Proofs

Proof of Theorem 1.2. Let us denote snd(n) by q. We should construct a hypergraph 
with at most c log q edges and positive discrepancy. Take m such that 2m − 1 ≤ q ≤
2m+1 − 2. Then

q − (2m − 1) =
m−1∑
i=0

εi2i for some εi ∈ {0, 1},

therefore

q =
m−1∑
i=0

ηi2i, where ηi = 1 + εi ∈ {1, 2}.

Consider m vectors in Zm:

v0 = (η0, . . . , ηm−1),
vi = (η0, . . . , ηi−2, ηi−1 + 2, ηi − 1, ηi+1, . . . , ηm−1) for i = 1, . . . ,m− 1, i.e.

vi,k =

⎧⎪⎪⎨
⎪⎪⎩
ηk, k �= i, i− 1
ηk − 1, k = i

ηk + 2, k = i− 1.

Note that the vector u = (1, 2, . . . , 2m−1) satisfies a system of linear equations

〈vi, u〉 = q; i = 0, . . . ,m− 1.
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Assume that q is odd. Choose odd δ ∈ (−q, q) such that x0 := n+ηm−1δ
q is integer. Define

xi := 2ix0 for i = 1, . . . ,m− 2; xm−1 := 2m−1x0 − δ,

then the vector x = (x0, . . . , xm−1) satisfies 〈vi, x〉 = n for i = 0, . . . , m − 2, 〈vm−1, x〉 =
n + δ.

In the case q = 2m ≥ 8 we have n ≡ 2m−1 (mod q) and η0 = 2, η1 = · · · = ηm−1 = 1.
Choose x = (x0, . . . , xm−1) so that 〈v1, x〉 = 〈vm−1, x〉 = n + 1 and 〈vi, x〉 = n for 

i = 0, 2, 3, . . . , m − 2. The solution is given by

x0 := n + 2m−1

q
; x1 := 2x0−1; xi := 2i−1x1 for i = 2, . . . ,m−2; xm−1 := 2m−2x1−1.

Now let us construct a hypergraph in the following way: for i = 0, . . .m − 1 let us 
take 4 sets Aj

i (j = 1, . . . , 4) of vertices of size xi such that all 4m sets Aj
i are disjoint. 

Let the edge e0 be the union of Aj
i over 0 ≤ i ≤ m − 1 and 1 ≤ j ≤ ηi. By the choice of 

xi and ηi we have |e0| = n. Then we add an edge

⋃
0≤i≤m−1

⋃
1≤j≤ηi for i�=k

j∈R for i=k

Aj
i

for every k and for every R ⊂ [4] such that |R| = ηk. Clearly there are at most 6m
such edges. Let us say that they form the first collection of edges. Finally, for every 
1 ≤ k ≤ m − 1 we add the edge

⋃
0≤i≤m−1

⋃
1≤j≤ηi for i�=k,k−1
1≤j≤ηi+2 for i=k−1
1≤j≤ηi−1 for i=k

Aj
i ,

which form the second collection of edges.
Summing up we have hypergraph with at most 7m edges; at most 2 of them have size 

not equal to n. Let us correct these edges in the simplest way: if an edge has size less 
than n then we add arbitrary vertices; if an edge has size greater than n then we exclude 
arbitrary vertices.

Suppose that our hypergraph has discrepancy 0, so it has a proper coloring π. For every 
set Aj

i denote by d(Aj
i ) the difference between the numbers of red and blue vertices of π

in Aj
i . Obviously, d(Aj1

i ) = d(Aj2
i ) because there are edges e1, e2 from the first collection 

such that e2 can be obtained from e1 by the replacement of Aj1
i to Aj2

i . So we may write 
di instead of d(Aj

i ).
If q is odd then the vector d = (d0, . . . , dm−1) satisfies

〈vi, d〉 = 0 for i = 0, 1, . . . ,m− 2 and 〈vm−1, d〉 = s
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for some odd s ∈ (−q, q). Considering consequent differences of these equations we get

di = 2id0 for i = 0, . . . ,m− 2; dm−1 = 2m−1d0 − s; 0 =
∑

ηidi = d0q − ηm−1s,

which fails modulo q. A contradiction. In the case q = 2m we get a similar contradiction, 
as (2m−1 − 1) ± 1 is not divisible by 2m.

Thus we get a hypergraph on at most 7m = O(log q) edges with positive discrepancy, 
the claim is proven. �
4. Discussion

• In fact, during the proof we have constructed a matrix of size of O(log k) with 
bounded integer coefficients and with determinant k := snd(n). By Hadamard in-
equality, the determinant k of m ×m matrix with bounded coefficients satisfies k =
O(

√
m)m, thus log k = O(m logm), m ≥ const ·log k/ log log k. We suppose that actu-

ally a matrix of size O(log k/ log log k) with bounded integer coefficients and determi-
nant k always exists; and moreover, it may be chosen satisfying additional properties 
which allow to replace the main estimate with f(n) ≤ c log snd(n)/ log log snd(n)
(which asymptotically coincides with the lower bound).

• It turns out, that for a fixed value of q = snd(n) and some values of n modulo 
q, a hypergraph, constructions of above type have the discrepancy separated from 
zero. In particular, in Example 2.1 the choice n ∈ {±4, ±7} modulo 19 leads to the 
discrepancy 6.

• For fixed r and large enough n using Theorem 1.2 one can construct an n-uniform 
hypergraph with discrepancy at least r and O(ln snd [n/r])r edges (here [x] stands 
for the nearest integer to x), as follows: let H0 be a hypergraph realizing f([n/r]), 
H1, . . . , H2r−1 be vertex-disjoint copies of H. Let V := V (H1) 
 · · · 
 V (H2r−1), 
E := {
ei | i ∈ A ⊂ [2r−1], |A| = r}. By the construction, every Hi has discrepancy 
at least 2; so by pigeonhole principle (V, E) has discrepancy at least 2r. Define 
l := r[n/r] − n. Finally, if l > 0, then exclude arbitrary l vertices from every edge 
e ∈ E; else add arbitrary l vertices to every edge e ∈ E; denote the result by H. By 
definition l ≤ r, so the discrepancy of H is at least r. Since |E(Hi)| = f([n/r]), we 
have

|E(H)| =
(

2r − 1
r

)
f([n/r])r = O(ln snd [n/r])r ≤ O(ln lnn)r.

• A. Raigorodskii independently asked the same question in a more general form: he 
introduced the quantity mk(n) that is the minimal number of edges in a hypergraph 
without a vertex 2-coloring such that every edge has at least k blue vertices and at 
least k red vertices. So mk(n) is the minimal number of edges in a hypergraph with 
discrepancy at least n − 2k + 2, in particular f(n) = mn/2(n) for even n.
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For the history and the best known bounds on mk(n) see [7]. Note that our result 
replaces the bound mk(2k + r) = O(ln k)r+1 [5] with mk(2k + r) = O(ln ln k)r+1 for 
a constant r. It worth noting, that in the case n = O(k) the behavior of mk(n) is 
completely unclear.
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