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a b s t r a c t

We suggest a new method for coloring generalized Kneser graphs
based on hypergraphs with high discrepancy and a small num-
ber of edges. The main result provides a proper coloring of
K (n, n/2 − t, s) in (4 + o(1))(s + t)2 colors, which is produced
by Hadamard matrices. Also, we show that for colorings by
independent set of a natural type, this result is the best possible
up to a multiplicative constant.

Our method extends to Kneser hypergraphs as well.
© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Let K (n, k, s) be the generalized Kneser graph, i.e. the graph with the vertex set
(
[n]
k

)
and the edges

connecting all pairs of vertices with intersection smaller than s, where [n] = {1, . . . , n}. Denote by
J(n, k, s) the generalized Johnson graph, i.e. the graph with the same vertex set

(
[n]
k

)
and the edges

connecting all pairs of vertices with intersection exactly s.
These graphs are quite popular objects in combinatorics. The chromatic number of the general-

ized Kneser graph was studied by Frankl and Füredi [9,10] for fixed k and s. Diameters of K (n, k, s)
and J(n, k, s) are computed in [7] and [1] respectively.
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Bobu and Kupriyanov [6] studied the chromatic number of J(n, n/2, s) for small values of s. They
got the following results.

Theorem 1. For every s < n/2 we have

s + 2 ≤ χ

[
J
(
n,

n
2
, s

)]
≤ 2

(
2s + 1
s + 1

)
.

Also, if s ≤ s′
√
n then for some c = c(s′)

χ

[
J
(
n,

n
2
, s

)]
≤ cn.

The lower bound immediately follows from the classical result of Lovász [17] on the Kneser
graphs. It turns out that the upper bound is a particular case of our Lemma 2 with t = 0 and the
complete hypergraph

H =

(
[2s + 1],

(
[2s + 1]

s

))
.

More results on chromatic and clique-chromatic numbers of generalized Johnson graphs can be
found in [22,23].

In this paper we improve the upper bound in Theorem 1 to a quadratic function in s for s =

O(
√
n) using high-discrepancy hypergraphs. For s ≥

√
n we have that the chromatic number grows

as n · e(2+o(1))s2/n which simplifies to e(2+o(1))s2/n when n ln n = o(s2). The latter again corresponds to
discrepancy results (see Section 4).

For every subset A ⊂ [n] size of at least s we define the corresponding independent set in
K (n, k, s) (usually it is called Frankl’s set):

IA :=

{
v ∈

(
[n]
k

) ⏐⏐⏐⏐ |v ∩ A| ≥
|A| + s

2

}
.

The complete intersection theorem of Ahlswede–Khachatryan [2] states that the independence
number of K (n, k, s) is always realized on some IA (they give precise formulation what IA is the
biggest depending on n, k and s).

Now define the F-chromatic number as the chromatic number, that uses only coloring by Frankl’s
sets. Obviously, χF ≥ χ and since J(n, n/2, s) is a subgraph of K (n, n/2, s + 1),

χ

[
J
(
n,

n
2
, s

)]
≤ χ

[
K

(
n,

n
2
, s + 1

)]
.

Our first main theorem is the following.

Theorem 2. The following hold:

(i) if s ≤
√
n/2 then

χF

[
K

(
n,

n
2
, s

)]
= Θ(s2);

(ii) if
√
n/2 ≤ s ≤ O(

√
n ln n) then there is a constant c > 0 such that

n · ecs
2/n

≤ χF

[
K

(
n,

n
2
, s

)]
≤ n · e(2+o(1))s2/n

;

(iii) if
√
n ln n ≪ s then the chromatic number satisfies

χ

[
K

(
n,

n
2
, s

)]
= e(2+o(1))s2/n.

The second main result is about generalized Kneser hypergraphs. Define

KH(n, r, k, s) =

((
[n]
k

)
, {{v1, . . . , vr}

⏐⏐ |vi ∩ vj| < s for each 1 ≤ i < j ≤ r }

)
.
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Theorem 3. Let n ≥ m > (r(r − 1)(s − 1) + rt)2, and assume that there is a Hadamard matrix of size
m. Then

χ

[
KH

(
n, r,

n
r

− t, s
)]

≤ 2m.

The paper is organized as follows. In Section 2 we prove Theorem 5, which implies the lower
bounds in Theorem 2(i) and (ii). In Section 3 we prove the upper bound in Theorem 2(i). In Section 4
we prove Theorem 2(iii) and the upper bound in Theorem 2(ii). In Section 5 we prove Theorem 3.
And finally in Section 6, we give a geometric application, and we close the paper with some
concluding remarks and open questions.

2. Lower bound for Theorem 2(i) and (ii)

The discrepancy of a hypergraph 2-coloring is the maximum over all edges of the difference
between the number of vertices of the two colors in the edge. The discrepancy of a hypergraph H
is the minimum discrepancy of among all 2-colorings of this hypergraph; we denote it by disc(H).

Lemma 1. Let t ≤ n/2 and s ≤ n/2 − t, and consider a proper F-coloring of K (n, n/2 − t, s). Let the
family {Ai}

q
i=0 generate the Frankl’s sets used for the proper F-coloring. Set V = ∪

q
i=0Ai and E = {Ai}

q
i=0.

Then the hypergraph H = (V , E) has discrepancy at least s.

Proof. Consider an arbitrary 2-coloring of [n]. Obviously, there is a monochromatic (say, red) vertex
v of K (n, n/2−t, s). Since v is contained in one of the Frankl’s sets, there is an edge A ∈ E containing
at least (|A| + s)/2 red elements from [n], so disc(H) ≥ s. □

We need the following theorem from [21] (it is also written in [5]).

Theorem 4. Let H = (V , E) be a hypergraph. Then

disc(H) ≤ 12
√

|E|.

By Lemma 1, a proper F-coloring of K (n, n/2 − t, s) with q colors gives us a hypergraph H with
q edges such that disc(H) ≥ s. Then by Theorem 4

12
√
q ≥ disc(H) ≥ s so q ≥

1
144

s2.

Thus, we proved the lower bound in Theorem 2(i) and a bit more.

Theorem 5. For every t ≤ n/2 and s ≤ n/2 − t we have

χF

[
K

(
n,

n
2

− t, s
)]

≥
1

144
s2.

The last displayed inequality in Section 12.2 in [4] states that there is a constant M such that for
every hypergraph H = (V , E) with |V | < |E| the following holds

disc(H) ≤ M

√
|V | ln

|E|

|V |
.

Now we can prove the lower bound in Theorem 2(ii). If there is an F-coloring with q colors then

M
√
n ln

q
n

≥ disc(H) ≥ s,

and hence

q ≤ n · es
2M−2n−1

.
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3. Upper bound in Theorem 2(i)

The t-shifted discrepancy of a 2-coloring is the maximum over all edges e of the quantity

|blue(e) − red(e) + t|,

where blue(e), red(e) mean the number of blue and red vertices in e. The t-shifted discrepancy of a
hypergraph H is the minimum discrepancy of among all 2-colorings of this hypergraph.

Lemma 2. Let H = (V , E) be a hypergraph with t-shifted discrepancy at least s+ t, and |V | ≤ n. Then

χF

[
K

(
n,

n
2

− t, s
)]

≤ 2|E|.

Proof. Embed H into [n]. For every edge e ∈ E define colors 1e and 2e as follows:

1e :=

{
A ∈ V

(
K

(
n,

n
2

− t, s
)) ⏐⏐⏐⏐ |A ∩ e| ≥

|e| + s
2

}
;

2e :=

{
A ∈ V

(
K

(
n,

n
2

− t, s
)) ⏐⏐⏐⏐ |A ∩ ē| ≥

|ē| + s
2

}
.

Vertices of the same color span an independent set (and it is a Frankl’s set by definition), because
every pair of vertices with the same color intersects by at least s points.

Every set A ⊂ [n] of size n
2 − t gives a 2-coloring of H by setting blue color to V (H) ∩ A and red

color to V (H) \ A. By the condition on the t-shifted discrepancy, there is a hyperedge e ∈ H such
that ⏐⏐|A ∩ e| − |Ā ∩ e| + t

⏐⏐ ≥ s + t.

Since |A ∩ e| + |Ā ∩ e| = |e|, we have

|A ∩ e| ≥
|e| + s

2
or |A ∩ e| ≤

|e| − s − 2t
2

.

It means that A ∈ 1e or A ∈ 2e respectively, because |A ∩ ē| ≥
|ē|+s
2 is equivalent to |A ∩ e| ≤

|e|−(s+2t)
2 .
To summarize: all the vertices are colored, and every color class is a Frankl’s set, i.e. our coloring

is a proper F-coloring. □

Theorem 6. Let n ≥ m > 4(s + t)2, and assume that there is a Hadamard matrix of size m. Then

χF

[
K

(
n,

n
2

− t, s
)]

≤ 2m.

Proof. It is well-known that a Hadamard matrix of size m produces a hypergraph with discrepancy
at least

√
m/2. We repeat the proof of this from [5] and show that for any t it has t-shifted

discrepancy at least
√
m − 1/2.

Let H = {hij} be a Hadamard matrix of order m with first row and first column all ones. Any
Hadamard matrix can be so ‘‘normalized’’ by multiplying appropriate rows and columns by −1. Let
v = (v1, . . . , vm), vi = ±1. Then

Hv = v1c1 + · · · + vmcm,

where ci denotes the ith column vector of H . Writing Hv = (L1, . . . , Lm) and letting |c| denote the
usual Euclidean norm,

L21 + · · · + L2m = |Hv|
2

= v2
1 |c1|

2
+ · · · + v2

m|cm|
2

= m + · · · + m = m2,

since the ci’s are mutually orthogonal. Note also that

L1 + · · · + Lm =

m∑
i,j=1

vjhij =

m∑
j=1

vj

m∑
i=1

hij = mv1 = ±m.
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Let J be the all ones matrix of order m. Set λ = v1 + · · · + vm so that Jv = (λ, . . . , λ) and

H + J
2

v =

(
L1 + λ

2
, . . . ,

Lm + λ

2

)
.

Let x = λ − 2t so
m∑
i=1

(Li + x)2 =

m∑
i=1

L2i + 2x
m∑
i=1

Li + mx2 = m2
± 2mx + mx2 ≥ m(m − 1). (1)

This implies that for some i we have⏐⏐⏐⏐ Li + λ

2
− t

⏐⏐⏐⏐ ≥

√
m − 1
2

.

Lemma 2 finishes the proof. □

It is worth noting that a random approach gives the same (up to a constant factor) bound, see [5].
Theorem 6 implies the upper bound in Theorem 2(i).

4. Proof of Theorem 2(iii) and the upper bound in Theorem 2(ii)

Frankl and Wilson proved [14] the following theorem.

Theorem 7. Let s ≤ n/4 and n/2 − s be a primary (prime or a power of a prime) number. Then

α

[
J
(
n,

n
2
, s

)]
≤

(
n

n
2 − s − 1

)
.

Now we are working in the setup s2 = Ω(n). First, suppose that n/2 − s is a primary number.
Then the lower bound on the chromatic number of K := K (n, n/2, s) becomes non-trivial:( n

n/2

)( n
n/2−s

) =
(n/2 + s) · . . . · (n/2 + 1)
(n/2) · . . . · (n/2 − s + 1)

=

∏s
i=1(1 +

i
n/2 )∏s−1

i=0 (1 −
i

n/2 )
= e(2+o(1))s2/n.

The prime numbers are dense, so again

χ

[
K

(
n,

n
2
, s + 1

)]
≥ χ

[
J
(
n,

n
2
, s

)]
≥

|V (J)|
α(J)

≥ e(2+o(1))s2/n. (2)

To show that the bound is near to optimal, recall the theorem of Lovász on fractional covers [16].
Let τ be the minimal number of edges required to cover all vertices of H and let τ ∗ be the minimal
sum of weights on edges required to cover all the vertices of H in such a way that the sum of
weights over edges containing every vertex is at least 1.

Theorem 8. Let H = (V , E) be a hypergraph, d be the maximum edge size of H. Then

τ (H) ≤ (1 + ln d)τ ∗.

Now we prove that we have equality in (2). Let A ⊂ [n] be a set that realizes maxA |IA|. We shall
apply Theorem 8 to the hypergraph

H :=

((
[n]
n
2

)
, {π (IA) | π ∈ Sn}

)
,

where Sn is the permutation group over [n]. A collection of hyperedges covering V (H) provides a
proper F-coloring of K , so

τ (H) ≥ χF (K ) ≥ χ (K ).
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By vertex transitivity we have

τ ∗(H) =
|V (H)|
d(H)

=
|V (K )|
α(K )

.

Putting this all together

χF (K ) ≤ τ (H) ≤ τ ∗(1 + ln d(H)) ≤
|V (K )|
α(K )

(1 + ln d(H)) ≤ ne(2+o(1))s2/n. (3)

Because of (2) for the case n ln n = o(s2) we have

χ

[
K

(
n,

n
2
, s

)]
= e(2+o(1))s2/n.

5. Hypergraph case

In this section we are going to extend our methods to generalized Kneser hypergraphs.
It turns out that we can repeat the arguments for graphs in this case. The w-shifted r-centered

discrepancy of a 2-coloring is the maximum over all edges of the quantity

|(r − 1)blue(e) − red(e) + w|,

where blue(e) and red(e) mean the number of blue and red vertices in e. The r-centered discrepancy
of a hypergraph H is the minimum discrepancy of among all 2-colorings of this hypergraph.

Lemma 3. Let H = (V , E) be a hypergraph with tr/2-shifted r-centered discrepancy x >
r(r−1)(s−1)+rt

2 ,
and |V | ≤ n. Then

χ

[
KH

(
n, r,

n
r

− t, s
)]

≤ 2|E|.

Proof. Embed H into [n]. For every edge e ∈ E define colors 1e and 2e as follows:

1e :=

{
A ∈ V

(
K

(
n, r,

n
r

− t, s
)) ⏐⏐⏐⏐ |A ∩ e| >

|e|
r

+
(r − 1)(s − 1)

2

}
;

2e :=

{
A ∈ V

(
K

(
n, r,

n
r

− t, s
)) ⏐⏐⏐⏐ |A ∩ ē| >

|ē|
r

+
(r − 1)(s − 1)

2

}
.

First, let us show that every vertex has a color. Every set A ⊂ [n] of size n
r − t gives a 2-coloring

of H by setting blue color to V (H)∩A and red color to V (H)\A. By the condition on the tr/2-shifted
r-centered discrepancy, there is a hyperedge e ∈ H such that⏐⏐⏐⏐(r − 1)blue(e) − red(e) +

tr
2

⏐⏐⏐⏐ ≥ x >
r(r − 1)(s − 1)

2
+

tr
2

.

Using blue(e) = |A ∩ e| and red(e) = |e| − |A ∩ e| we have either

−|e| + r|A ∩ e| +
tr
2

>
r(r − 1)(s − 1)

2
+

tr
2

or

−|e| + r|A ∩ e| +
tr
2

< −
r(r − 1)(s − 1)

2
−

tr
2

.

In the first case

|A ∩ e| >
|e|
r

+
(r − 1)(s − 1)

2
,

i.e. A is colored by 1e. In the second case

|A ∩ e| <
|e|
r

−
(r − 1)(s − 1)

2
− t.
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Using |A ∩ ē| + |A ∩ e| =
n
r − t we have

|A ∩ ē| >
n
r

− t −
|e|
r

+
(r − 1)(s − 1)

2
+ t =

|ē|
r

+
(r − 1)(s − 1)

2
,

i.e. A is colored by 2e.
Suppose that there is a monochromatic edge {v1, . . . , vr}. Then there is an edge or the comple-

ment of an edge (denote it by e) such that for i = 1, . . . , r the following holds

|vi ∩ e| >
|e|
r

+
(r − 1)(s − 1)

2
.

This implies
r∑

i=1

|vi ∩ e| > |e| + r
(r − 1)(s − 1)

2
.

From the other hand, since |vi ∩ vj| < s we have

|e| ≥

r∑
i=1

|vi ∩ e| −
r(r − 1)

2
(s − 1),

a contradiction. □

The proof of Theorem 3 is similar to the proof of Theorem 6 with the replacement of Lemma 2
with Lemma 3. Since the inequality (1) holds for every x and all the sets from Hadamard matrix
have the size m/2 it works for centered and shifted discrepancy.

6. A geometric application

First, we need some additional definitions. Let

Vk := {v ∈ {0, ±1}n | |v| =
√
k};

Vk,l := {v ∈ {0, ±1}n | v has exactly k ‘1’ and exactly l ‘−1’}.

Furthermore, we define

K (n, k, s) := (Vk, {(v1, v2) | (v1, v2) < s}); K (n, k, l, s) := (Vk,l, {(v1, v2) | (v1, v2) < s});

J(n, k, s) := (Vk, {(v1, v2) | (v1, v2) = s}); J(n, k, l, s) := (Vk,l, {(v1, v2) | (v1, v2) = s}),

where (v1, v2) is the standard inner product. Also, the support of a vector is the set supp(v) ∈ [n]
of its non-zero coordinates.

Obviously, there is a natural bijection between the subsets of [n] and {0, 1}-vectors in Rn. If
we fix the size of subsets, then the corresponding vectors lie on a sphere. It implies one-to-one
correspondence between the scalar product and the Euclidean distance in this case. So J(n, k, s) is
a distance graph.

The independence number of such a graph was studied [11–13] by Frankl and Kupavskii. In [12]
the authors find an explicit value of the independence number of J(n, k, 1, −2). Paper [11] is devoted
to the independence numbers of K (n, k, s) with n > n0(k, s). Finally, the work [13] deals with the
independence number of J(n, k, l, −2l) for arbitrary n, k and l.

It is also worth noting that Cherkashin, Kulikov and Raigorodskii [8] improved lower bounds on
the chromatic numbers of small-dimensional Euclidean spaces via chromatic numbers of J(n, 3, 1).

In this setup s is the difference between the minimal scalar product and the maximum restricted
scalar product; t is the difference between n/2 and the size of a vertex support. Using Theorem 6
we have that the chromatic number is at most quadratic in the small parameters.

Corollary 1. Let n ≥ m > 4(s + 2l + t)2, and assume that there is a Hadamard matrix of size m. Then

χ

[
K

(
n,

n
2

− l − t, l, −2l + s
)]

≤ 2m.
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Proof. Note that if vertices v1, v2 are such that |supp(v1) ∩ supp(v2)| = q, then the scalar product
(v1, v2) ≥ q − 4l. So for q ≥ 2l + s the vertices are not adjacent. Hence

χ

[
K

(
n,

n
2

− l − t, l, −2l + s
)]

≤ χ

[
K

(
n,

n
2

− t, 2l + s
)]

.

Using Theorem 6 we are done. □

7. Discussion

Improving the lower bound for general colorings. Recall that the exact value of the chromatic number
of Kneser graph was determined by Lovász [17]. Then Alon, Frankl and Lovász [3] determined the
chromatic number of Kneser hypergraphs, i.e. proved that

χ (KH(n, r, k, 1)) =

⌈
n − r(k − 1)

r − 1

⌉
.

Since then several different proofs have appeared. One of the two main ways to prove the lower
bound uses Borsuk–Ulam theorem (or its analogues), see [18–20,24] and the other computes the
connectedness of a corresponding complex, see [3,15,17].

Recall that for k being almost n/r we have quadratic dependence on small parameters. Un-
fortunately, we are not able to improve the linear lower bound and this problem looks quite
challenging.

Discrepancy. In Section 4 we showed that there is a close relation between F-chromatic number and
the discrepancy theory. For instance, Lemma 1 and relation (3) imply the existence of a hypergraph
H = (V , E) for every |E| ≥ |V | such that

disc(H) ≥ (1 + o(1))

√
|V | ln |E|

|V |

2
,

which is optimal up to a constant.
It might be interesting to explore the concept of shifted and centered discrepancy in general.

Constant values of s. Obviously, χ [K (n, n/2, 1) = J(n, n/2, 0)] = χF [K (n, n/2, 1) = J(n, n/2, 0)] = 2,
because the graph is a matching. Note that disc([3], {{1, 2}, {1, 3}, {2, 3}}) = 2, so by Lemma 2 we
have the following observation

χF

[
K

(
n,

n
2
, 2

)]
≤ 6.

Also Fano’s plane has discrepancy 3, so χF
[
K

(
n, n

2 , 3
)]

≤ 14, but this seems not to be optimal. On
the other hand, Theorem 1 gives 3 ≤ χF [K (n, n/2, 2)] and 4 ≤ χF [K (n, n/2, 3)]. Finding the exact
values of the chromatic numbers for constant s is also of some interest.
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