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Записки научных
семинаров ПОМИ

Том 498, 2020 г.

G. A. Veprev

SCALING ENTROPY OF UNSTABLE SYSTEMS

Abstract. In this paper, we study the slow entropy-type invariant
of a dynamic system proposed by A. M. Vershik. We provide an
explicit construction of a system that has an empty class of scaling
entropy sequences. For this unstable case, we introduce an upgraded
notion of the invariant, generalize the subadditivity results, and pro-
vide an exhaustive series of examples.

§1. Introduction

The classical notion of Kolmogorov–Sinai entropy is based on the dy-
namics of measurable partitions of a measure space. For the case of zero
entropy systems, A. M. Vershik proposed (see [1, 2]) a new approach based
on the dynamics of functions of several variables. In topological dynamics,
a metric space is usually fixed, and one considers invariant measures on it.
In contrast to that, we will implement Vershik’s approach, which is the fol-
lowing. We fix an automorphism of a measure space and vary a measurable
metric (semimetric) on the space. For some metric and sufficiently small
ε > 0, we consider the sequence of the ε-entropies of averaged metrics.
This family of sequences increases in ε and often has a limit as ε goes to
zero. If this limit exists, we say that the system is stable. The limit itself
does not depend on the choice of the metric (see [4]) and is proved to be
subadditive (see [5]). Note that similar constructions (measure–theoretic

complexity) were considered in [7] and [8].
In this paper, we show that this limit does not necessarily exist in the

classical sense. However, the invariant can be extended to the general case
(see Sec. 3). We also prove its subadditivity and construct a complete
family of examples.

Now let us proceed to the formal definitions.

Key words and phrases: zero entropy, scaling entropy, subadditivity, nonstable
systems.
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6 G. A. VEPREV

Let (X,µ, ρ) be a standard probability measure space endowed with a
measurable semimetric ρ on X , meaning that ρ(x, y) is a symmetric non-
negative measurable function on (X2, µ2) satisfying the triangle inequality.
For a given positive ε, we define the ε-entropy of (X,µ, ρ) in the following
way.

Definition 1. Let k be the minimum positive integer such that X decom-

poses into a union of measurable sets X0, X1, . . . , Xk with µ(X0) < ε and

diamρ(Xi) < ε for all i > 0. Set

Hε(X,µ, ρ) = log2 k.

If there is no such k, set Hε(X,µ, ρ) = +∞.

Assume that for some semimetric ρ its ε-entropies are finite for all posi-
tive ε. In [3] it is shown that this property is equivalent to the separability
of ρ on a set of full measure. In this case, the semimetric is said to be
admissible.

Now let T be an invertible measure-preserving transformation of the
standard measure space (X,µ). For n ∈ N, denote by T n

avρ the T -averaged
semimetric:

T n
avρ(x, y) =

1

n

n−1∑

k=0

ρ(T kx, T ky), x, y ∈ X.

Clearly, if ρ is admissible, then T n
avρ is admissible too.

Another condition requires the semimetric to be nontrivial. We say that
ρ is generating if there exists a setX ′ ⊂ X of full measure such that for any
x, y ∈ X ′ there is n ∈ N with T n

avρ(x, y) > 0. For example, any measurable
metric is generating.

Consider the following function:

Φρ(n, ε) = Hε(X,µ, T
n
avρ), n ∈ N, ε > 0.

Note that Φρ(n, ε) < +∞ for all ε and n provided that ρ is admissible. In
general, the function Φ depends on ε, n, and the semimetric ρ. However,
its asymptotic behavior in a sense does not depend on ε and ρ, i.e., it is
an isomorphism invariant of the dynamical system. The following result is
proved in [4].

Theorem (Zatitskiy, 2015). Let T be an automorphism of a standard mea-

sure space (X,µ). Suppose that for some admissible generating semimetric
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ρ on (X,µ) there is a sequence {hn} such that for all sufficiently small

ε > 0

Φρ(n, ε) ≍ hn.

Then for any admissible generating semimetric ω and any ε small enough,

Φω(n, ε) ≍ hn.

Here and in what follows, for two sequences φ(n) and ψ(n), the relation
φ ≍ ψ means that there exist two positive constants c and C such that
cφ(n) 6 ψ(n) 6 Cφ(n) for all n ∈ N.

Definition 2. In this case, we call the sequence hn a scaling entropy
sequence of (X,µ, T ), and the system itself is said to be stable.

Some important properties of the system can be described in terms of its
scaling sequence. For example, if the Kolmogorov–Sinai entropy is positive,
then one can choose hn = n as a scaling entropy sequence of the system.
In [3] it is shown that the scaling sequence is bounded if and only if the
automorphism has a pure point spectrum. In [5] F. V. Petrov and P. B. Za-
titskiy proved that if a scaling sequence exists, then it can be chosen to
be increasing and subadditive. Conversely, there exists a stable ergodic
system with a given increasing subadditive scaling entropy sequence, i. e.,
the complete classification of possible scaling sequences was obtained in
the stable case.

Until now, it was unclear whether or not unstable systems exist. In
this paper, we give a positive answer to this question and generalize the
scaling entropy sequence invariant to the general case. Also, we construct
an exhaustive family of examples.

Acknowledgments. The author would like to thank Anatoly Vershik for
his attention to this work. The author is also grateful to his supervisor
Pavel Zatitskiy for many helpful discussions.

§2. Construction of an unstable system

Theorem 1. There exists an ergodic system (X,µ, T ) and an admissible

semimetric ρ on X such that the asymptotic behavior of Hε(X,µ, T
n
avρ)

essentially depends on ε, meaning that for any ε > 0 there exists δ such

that ε > δ > 0 and

Hε(X,µ, T
n
avρ) � Hδ(X,µ, T

n
avρ).
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Here φ . ψ means that there is a positive constant C such that φ(n) <
Cψ(n) for all n ∈ N. We write φ � ψ if φ . ψ but not φ ≍ ψ.

Proof. Let A = {φm}∞m=1 be an infinite family of subadditive functions
on N such that φm � φm+1. One could choose φm(n) = logm(n), for
instance. By [6], there is a family of corresponding ergodic systems Sm =
(Xm, µm, Tm) such that for all m, any admissible generating semimetric
ρm on (Xm, µm), and all positive ε small enough,

Hε(Xm, µm, T
n
avρm) ≍ φm(n).

For each m ∈ N, we fix an admissible generating semimetric ρm 6 1 on

(Xm, µm). Then we define a system ŨA as the product of Sm:

ŨA =

( ∞∏

m=1

Xm,

∞∏

m=1

µm,

∞∏

m=1

Tm

)
,

where the automorhism
∞∏

m=1
Tm acts independently on each factor. Now,

by the ergodic decomposition theorem, there exists an ergodic measure µ

on
∞∏

m=1

Xm such that all its coordinate projections coincide with the initial

measures µm. Let us change the measure to obtain an ergodic system

UA =

( ∞∏

m=1

Xm, µ,

∞∏

m=1

Tm

)
.

Define a semimetric ρ on the product space as follows: for all x, y∈
∞∏

m=1
Xm,

ρ(x, y) =

∞∑

m=1

1

2m
ρm(xm, ym).

Clearly, ρ is generating, and, as we will show below, its ε-entropies are
finite for all ε. Therefore, ρ is admissible and generating.

Lemma 1. Let UA and ρ be the product system and the semimetric de-

scribed above. Then

Hε(UA, T
n
avρ) 6

R(ε)∑

m=1

H ε
2R(ε)

(Xm, µm, (Tm)
n
av ρm), ε > 0,

where R(ε) = − log(ε).
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Proof. Let us fix some n ∈ N and ε > 0. For each Xm consider its

decomposition into subsets A
(m)
0 , . . . , A

(m)
km

such that µ
(
A

(m)
0

)
< ε

2R(ε)

and diamTn
avρm

(
A

(m)
i

)
< ε

2R(ε) for i > 0. Here

log km = H ε
2R(ε)

(Xm, µm, (Tm)
n
av ρm).

Let πm be the standard projection onto Xm. The construction of µ implies
that πm is measure-preserving. Denote

Â
(m)
i = π−1

m

(
A

(m)
i

)
.

Define a new error set K0 =
R⋃

m=1
Â

(m)
0 , where R = R(ε) = − log(ε).

Clearly,

µ(K0) 6
R∑

m=1

Â
(m)
0 6

ε

2
.

For every J = (j1, . . . , jR), where jm lies in {1, . . . , km}, define

KJ =

R⋂

m=1

Â
(m)
jm

\K0.

Note that

T n
avρ(x, y) =

∞∑

m=1

1

2m
T n
avρm(x, y).

Therefore,

diamTn
avρ

(KJ) 6

∞∑

m=1

1

2m
diamTn

avρm
πm(KJ)

6

R∑

m=1

1

2m
diamTn

avρm
A

(m)
jm

+

∞∑

m=R+1

1

2m
diamTn

avρm
Xm

6 R · ε

2R
+ 2−R−1 <

ε

2
+
ε

2
= ε.

So, we have constructed a partition K = {KJ}J∪{K0} such that µ(K0) < ε

and diamTn
avρ

KJ < ε. The cardinality of K does not exceed k1·k2·. . .·kR+1.
Thus,

Hε(UA, T
n
avρ)6 log (|K| − 1)6

R(ε)∑

m=1

km=

R(ε)∑

m=1

H ε
2R(ε)

(Xm, µm, (Tm)
n
av ρm),
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as required. �

Now, assume that UA is stable, i. e., there exists some ε0 > 0 such that
for any ε 6 ε0 the following equivalence holds:

Hε(X,µ, T
n
avρ) ≍ Hε0(X,µ, T

n
avρ).

By Lemma 1, one has

Hε(X,µ, T
n
avρ) .

R(ε0)∑

k=1

H ε0
2R(ε0)

(Xk, µk, (Tk)
n
av) . φR(ε0)(n). (1)

Let hn be a scaling entropy sequence of the system. By the previous for-
mula, hn does not exceed φR(ε0)(n) asymptotically. However, in [6] it is
proved that a scaling entropy sequence of a system grows not slower than
the entropy sequence of a factor system. This implies that for any m

hn & φm(n).

One can, for instance, choose m = R(ε0) + 1 and obtain a contradiction.
Therefore, our assumption is false, and the system UA is not stable. �

§3. Invariance

The purpose of this section is to generalize the notion of the scaling
entropy sequence invariant to the general (unstable) case. In this case, it
will be some equivalence class of functions of two variables. Let us define
the equivalence relation.

Definition 3. Let Φ,Ψ: N×R+ → R+ be two functions that are decreasing

with respect to their second arguments. We will write Φ � Ψ if for any

ε > 0 there is δ > 0 such that

Φ(n, ε) . Ψ(n, δ).

We will say that Φ and Ψ are equivalent if Φ � Ψ and Ψ � Φ. In this case,

we will write Φ ∼ Ψ.

Clearly, the relation � is a partial order on the set of equivalence classes.
We will denote by [Φ] the class of a function Φ.

Assume that a measure-preserving system (X,µ, T ) with an admissi-
ble semimetric ρ is given. Let us define the scaling entropy of the system

(X,µ, T ) with respect to the semimetric ρ as the following equivalence class:

H(X,µ, T, ρ) =
[
Hε(X,µ, T

n
avρ)

]
.
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In fact, this class does not depend on the choice of a generating admis-
sible semimetric. Moreover, in [4] the following theorem is proved.

Theorem (Zatitskiy, 2015). Let (X,µ, T ) be a measure-preserving system.

Assume that ρ is an admissible generating semimetric with a finite integral

over (X2, µ2). Then for any admissible semimetric ω with a finite integral

and any ε > 0 there exist positive c and δ such that

Hε(X,µ, T
n
avω) 6 cHδ(X,µ, T

n
avρ).

Corollary 1 (invariance). Let ρ and ω be two admissible generating semi-

metrics with finite integrals. Then

H(X,µ, T, ρ) = H(X,µ, T, ω).

This corollary allows us to give the following definition.

Definition 4. The scaling entropy of the system (X,µ, T ) is the following

class:

H(X,µ, T ) = H(X,µ, T, ρ),

where ρ is an arbitrary admissible generating semimetric with a finite in-

tegral.

An important example of such a semimetric is the cut semimetric cor-
responding to a (countable) generating partition. Another useful corollary
gives an estimate of the scaling entropy of a factor system.

Corollary 2. Let
(
X̂, µ̂, T̂

)
be a factor of a measure-preserving system

(X,µ, T ). Then

H
(
X̂, µ̂, T̂

)
� H(X,µ, T ).

§4. Subadditivity

In this section, we prove that the scaling entropy of a system is in-
creasing and subadditive with respect to n. Conversely, every increasing
in n subadditive function (decreasing in ε) can be obtained as the scaling
entropy of some automorphism.

Definition 5. We say that a function Φ(n, ε) is subadditive if for all

ε > 0 and for any k,m ∈ N,

Φ(k +m, ε) 6 Φ(k, ε) + Φ(m, ε).
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Theorem 2. Let (X,µ, T ) be a measure-preserving system. Then there

exists a subadditive function Φ(n, ε) increasing in n and decreasing in ε

such that

Φ ∈ H(X,µ, T ).

Proof. We will use the following estimates proved in [5].

Lemma 2 (Petrov, Zatitskiy, 2015). Let ρ1, . . . , ρk be admissible semi-

metrics on a measure space (X,µ) with ρi 6 1 for all i 6 k.

(1) Suppose that ε > 0 and Hε(X,µ, ρi) > 0 for all i 6 k. Then

H2
√
ε

(
X,µ,

1

k

k∑

i=1

ρi

)
6 2

k∑

i=1

Hε(X,µ, ρi).

(2) There exists m 6 k such that

H2
√
ε(X,µ, ρm) 6 Hε

(
X,µ,

1

k

k∑

i=1

ρi

)
.

Now, let ρ 6 1 be an admissible generating semimetric. Denote

Ψ(m, ε) = Hε(X,µ, T
m
avρ).

Proposition 1. The following inequalities hold.

(1) For all k, n ∈ N and positive ε small enough,

Ψ(kn, ε) 6 2kΨ

(
n,
ε2

4

)
.

(2) For all k, n ∈ N with k 6 n,

Ψ(n, ε) > Ψ
(
k, 2

√
2ε
)
.

Proof. Let us prove the first inequality. Note that for ε < 1
3

∫
X2

ρ the ε-en-

tropy of ρ is positive. Also, any averaged semimetric Tm
avρ has the same

integral as the initial one; therefore, its ε-entropy is positive too. Let us
fix such ε > 0 and some k, n ∈ N. For i 6 k define

ρi = T (i−1)n T n
avρ.

Clearly,

T kn
av ρ =

1

k

k∑

i=1

ρi.
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Applying Lemma 2, we obtain

Hε

(
X,µ, T kn

av ρ
)
6 2

k∑

i=1

H ε2

4

(X,µ, ρi) = 2kH ε2

4

(X,µ, T n
avρ).

The first part is proved.
Let us proceed to the second inequality. Let n = km+ r, where r < k.

Note that r 6 n
2 . Then

T n
avρ >

1

n

km∑

i=0

T iρ >
n− r

n

1

km

km∑

i=0

T iρ >
1

2
T km
av ρ.

Thus,

Hε(X,µ, T
n
avρ) > Hε

(
X,µ,

1

2
T km
av ρ

)
> H2ε

(
X,µ, T km

av ρ
)
.

Now apply the second part of Lemma 2 for the semimetrics ρi=T
(i−1)nT n

avρ.
We obtain

Hε(X,µ, T
n
avρ) > H2ε

(
X,µ, T km

av ρ
)
> H2

√
2ε

(
X,µ, T k

avρ
)
. �

Lemma 3. Let η(n), φ(n), and ψ(n), n ∈ N, be sequences of nonnegative

real numbers. Suppose that

φ(kn) 6 kψ(n) for k, n ∈ N (2)

and

φ(n) > η(k) for k 6 n. (3)

Then there exists an increasing subadditive function θ(n) such that

η(n) 6 θ(n) 6 2ψ(n).

Proof. Let
φ̂(n) = inf

m>n
φ(m) 6 φ(n).

It is clear that φ̂ is increasing and, by (3), for any k 6 n

φ̂(n) > η(k).

Also, by (2), for all k, n ∈ N

φ̂(kn) 6 φ(kn) 6 kψ(n).

Define θ̂ as follows:

θ̂(n) = sup
k>0

φ̂(kn)

k
6 ψ(n).
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Obviously, θ̂(n) > φ̂(n). Note that θ̂ increases, because φ̂ increases, and

θ̂(kn) = sup
m>0

φ̂(mkn)

m
= k sup

m>0

φ̂(mkn)

mk
6 k sup

l>0

φ̂(ln)

l
= kθ̂(n).

Now define θ as

θ(n) = n sup
m>n

θ̂(m)

m
> θ̂(n) > φ̂(n) > η(n).

First, θ is increasing. Indeed,

θ(n) = max

(
θ̂(n), n sup

m>n+1

θ̂(m)

m

)

6 max

(
θ̂(n+ 1), (n+ 1) sup

m>n+1

θ̂(m)

m

)
= θ(n+ 1).

Second, θ is subadditive:

θ(k+n) = (k+n) sup
m>k+n

θ̂(m)

m
6 k sup

m>k

θ̂(m)

m
+n sup

m>n

θ̂(m)

m
= θ(k)+θ(n).

It only remains to show that θ(n) 6 2ψ(n). Indeed,

θ(n) = n sup
m>n

θ̂(m)

m
6 n sup

m>n

θ̂
(
n
[
m
n

]
+ n

)

m

6 sup
m>n

n
[
m
n

]
+ n

m
θ̂(n) 6 2ψ(n). �

Now let us complete the proof of the theorem. For a fixed ε > 0, we use

Lemma 3 with η(n) = Ψ
(
n, 2

√
2ε
)
, φ(n) = Ψ(n, ε), and ψ(n) = 2Ψ

(
n, ε

2

4

)
;

conditions (2) and (3) of Lemma 3 are guaranteed by Proposition 1. We
obtain an increasing subadditive function Θ(n, ε) such that

Ψ
(
n, 2

√
2ε
)
6 Θ(n, ε) 6 4Ψ

(
n,
ε2

4

)
. (4)

It only remains to make it decreasing in ε. To do this, let us find a sequence
{εk}∞k=1 such that Θ(n, εk) < 4Θ(n, εk+1) for all k, n ∈ N and εk tends
to 0. This can always be done due to inequality (4). For ε > 0, denote by
γ(ε) the smallest k such that εk < ε. Then set

Φ(n, ε) = 4kΘ
(
n, εγ(ε)

)
.
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It is easy to see that Φ ∼Θ ∼ Ψ; therefore, Φ ∈ H(X,µ, T ), as required. �

The next theorem gives the opposite result. It completes the description
of the possible values of the invariant.

Theorem 3. Let Φ(n, ε) be a subadditive function of two variables in-

creasing in n and decreasing in ε. Then there exists a measure-preserving

system (X,µ, T ) such that

Φ ∈ H(X,µ, T ).

Proof. We will use the construction of an unstable system described in
Sec. 2. Let

φm(n) = Φ

(
n,

1

m

)
.

Note that φm(·) is increasing and subadditive. Denote A = {φm}∞m=1. Let
us construct the system UA and show that Φ ∈ H(UA). Lemma 1 gives an
upper bound for any fixed ε > 0:

Hε(UA, T
n
avρ) 6

R(ε)∑

k=1

H ε
2R(ε)

(Xk, µk, (Tk)
n
av ρk) . φR(ε)(n).

Therefore,
H(UA) � Φ.

However, UA has a stable factor (Am, µm, Tm). Then for all m > 1

H(UA) � φm(n).

Thus, H(UA) ∋ Φ, as required. �

§5. On the minimality of the relation

It might seem that the equivalence relation we defined is too strong. The
question is whether δ in Definition 3 can be improved. Can δ be controlled
by some function of ε? Note that the proof of the subadditivity (Theorem 2)
requires δ = 4ε2 only. If there exists a weaker equivalence relation, then
the invariant can separate more systems. However, the following theorem
claims that our relation is sharp in this sense.

Theorem 4. Let f : (0, 1) → (0, 1) be an increasing function. Then there

exists a measure-preserving system (X,µ, T ) and two admissible generating

semimetrics ρ and ω on X such that for any ε0 > 0 there is ε such that

0 < ε < ε0 and

Hε(X,µ, T
n
avω) � Hf(ε)(X,µ, T

n
avρ). (5)
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Proof. Let us first prove the following proposition.

Proposition 2. Let h : (0, 1) → (0, 1) be some map. Then there exists

κ ∈ (0, 1) such that there is an increasing sequence in h−1(κ, 1).

The proof of the proposition is clear. Indeed, any subset of the real line
that contains no infinite increasing sequence is countable.

Now let {ψα(n)}, α ∈ (0, 1), be a family of increasing subadditive func-
tions such that ψα1(n) � ψα2(n) for any α1 < α2. For example, one can use
ψα(n) = log1+α(n). Consider the corresponding stable measure-preserving
systems (Yα, να, Rα) and admissible generating semimetrics τα 6 1 such
that for any positive ε < h(α)

Hε(Yα, να, (Rα)
n
avτα) ≍ ψα(n).

By Proposition 2, we obtain some κ > 0 and an increasing sequence
{αm}∞m=1 such that h(αm) > κ for all m > 0. Let us define φm = ψαm

and let A be the family of φm. Now let us construct UA as in Sec. 2 using
(Yαm

, ναm
, Rαm

) = (Xm, µm, Tm) as the coordinate factors.
Define ρ as the standard semimetric on UA:

ρ(x, y) =

∞∑

m=1

1

2m
ρm(xm, ym),

where ρm = ταm
. We will look for ω in a similar linear form:

ω(x, y) =

∞∑

m=1

Cmρm(xm, ym),

where 1 > Cm > 0 and
∑∞

m=1 Cm is finite. Note that any semimetric of
this type is always generating and admissible.

For all m, n > 1,

Hε(UA, T
n
avω) > Hε(UA, CmT

n
avρm) = Hε(Xm, µm, Cm(Tm)

n
av).

Using the fact that Cm 6 1, we obtain

Hε(Xm, CmT
n
avρm) > H ε

Cm
(Xm, T

n
avρm) ≍ φm(n),

while ε
Cm

6 κ. Therefore,

Hε(UA, T
n
avω) & φm(n)

for all m such that Cm > κ−1ε. Let K(ε) be the largest such m.
However, Lemma 1 gives an upper bound on the ε-entropy of ρ:

Hε(UA, T
n
avρ) . φR(ε)(n),
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where R(ε) = − log ε. Hence,

Hf(ε)(UA, T
n
avρ) . φR(f(ε))(n).

Inequality (5) holds for every ε such that

K(ε) > R(f(ε)).

And this is true when
CR(f(ε))+1 > κ−1ε.

Now let εp = κ2−p for p ∈ N and set CR(f(εp))+1 = 2κ−1εp 6 1. If some

Cm is not defined yet, set Cm = 2−m. Clearly, the obtained semimetric ω
is as required. �
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