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ABSTRACT

Let G be a non-periodic amenable group. We prove that there does not

exist a topological action of G for which the set of ergodic invariant mea-

sures coincides with the set of all ergodic measure-theoretic G-systems of

entropy zero. Previously J. Serafin, answering a question by B. Weiss,

proved the same for G = Z.

1. Introduction

In this work, we generalize the result of [8] to the case of a non-periodic amenable

group G. Namely, we prove that there does not exist a topological zero entropy

system which is universal for ergodic measure-theoretic G-actions with zero

entropy. The main tool that we implement in the proof is the notion of scaling
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entropy which was proposed in works by A. M. Vershik [12, 13]. The theory

of scaling entropy was developed in [7, 14, 18, 19]. In this work, we prove the

lower bound for the ε-entropy of an averaging of independent metrics (Lemma 5)

which allows us to estimate a scaling entropy for a special series of examples of

G-actions. The existence of such a series (see Definition 4) implies the absence

of a universal zero entropy system.

1.1. Classical notions. Let us recall several basic notions of the entropy

theory of dynamical systems (see, e.g., [4]). A countable group G is called

amenable if it satisfies the Følner condition, meaning that there is a se-

quence {Fn}∞n=1 of finite subsets of G such that for any g ∈ G

lim
n→∞

|gFn�Fn|
|Fn| = 0.

In this case, the sequence is called a left Følner sequence. A right Følner se-

quence can be defined in a similar way. We will consider left actions of amenable

groups on Lebesgue measure spaces without point masses, i.e., measure spaces

that are isomorphic to the unit segment with the Lebesgue measure.

1.1.1. Amenable Topological Entropy. Let an amenable group G act by homeo-

morphisms on a compact metric space (X, d). The amenable topological entropy

of this action can be defined in the following way:

htop(X,G) = sup
ε>0

lim sup
n→+∞

1

|Fn| log spn(d, Fn, ε)

= sup
ε>0

lim sup
n→+∞

1

|Fn| log sep(d, Fn, ε),

where spn(d, Fn, ε) and sep(d, Fn, ε) are cardinalities of the minimal ε-net and

the maximal ε-separated set respectively for the maximized metric

Gnmaxd(x, y) = max
g∈Fn

d(gx, gy), x, y ∈ X.

The value of htop(X,G) does not depend on the choice of Følner sequence and

forms a topological invariant of a dynamical system.
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1.1.2. Amenable Measure Entropy. Assume that G acts by automorphisms on

a standard probability space (X,μ). The entropy of a measurable partition ξ

is defined as the following non-negative value:

H(ξ) = −
∫
X

logμ(ξ(x)) dμ(x),

where ξ(x) stands for the cell of ξ that contains a point x ∈ X . For a partition ξ

with finite entropy, define its entropy with respect to the measure-preserving

action of G:

h(ξ) = lim
n→+∞

1

|Fn|H
( ∨
g∈Fn

g−1ξ

)
,

where ∨ is the refinement sign. The amenable measure entropy of the action

is defined by

h(X,μ,G) = sup{h(ξ) : H(ξ) < +∞}.
Amenable measure entropy is independent of the choice of Følner sequence and

forms an invariant of a measure-preserving system.

1.1.3. The Variational Principle. The variational principle is a well-known re-

lation between topological and measure-theoretic entropies. Let G� (X, d) be

a continuous action of G on a compact metric space and MG(X) be a set of all

G-invariant Borel probability measures on X . Then MG(X) is non-empty and

htop(X,G) = sup
μ∈MG(X)

h(X,μ,G).

1.2. Universal systems of entropy zero. Questions about the existence

of universal dynamical systems in various senses have been studied, for example,

in [1, 8, 9, 16, 17]. We will use the following definition (see, e.g., [1, 8]).

Definition 1: A topological system (X,G) is called universal for some class S
of ergodic measure-preserving actions of G if the following two conditions hold:

(1) For any ergodic μ ∈MG(X) the system (X,μ,G) belongs to S.
(2) For any (Y, ν,G) ∈ S there exists an invariant measure μ on (X,G)

such that (X,μ,G) is measure-theoretically isomorphic to (Y, ν,G).

In [8], the question about the existence of a universal system for all zero

entropy systems appears. This question goes back to B. Weiss. Due to the

variational principle and the first condition in Definition 1, such a system must

have zero topological entropy.
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Question 1: Does there exist a system (X,G) with zero topological entropy

which is universal for the class of all ergodic measure-preserving actions of zero

entropy?1

The work by J. Serafin [8] gives the negative answer to Question 1 for the case

of the group Z. However, this question is still open for general amenable groups.

The approach of [8] is based on the notions of symbolic and measure-theoretic

complexity of a dynamical system (see also [2]) and special constructions of

systems with rapidly growing measure-theoretic complexity. The author of that

work points out that this approach did not work for the case of amenable groups

due to insufficient development of the theory of symbolic extensions. Let us

remark that the notion of measure-theoretic complexity is closely related to

the notion of scaling entropy that we use. The main result of our work is the

following theorem, which gives the negative answer to Question 1 in the case of

a non-periodic amenable group G.

Theorem 1: LetG� (X, d) be a continuous action of a countable non-periodic

amenable group G on a compact metric space (X, d). Suppose that for any

ergodic measure-preserving dynamical system (Y, ν,G) with zero entropy there

exists an invariant measure μ on X with

(X,μ,G) ∼= (Y, ν,G).

Then the topological entropy of (X, d,G) is positive.

2. Scaling entropy

2.1. Epsilon-entropy and scaling entropy sequence. The main tool in

the proof of Theorem 1 is the notion of scaling entropy introduced by A. Vershik

in [11, 12, 13]. The closely related notion of measure-theoretic complexity ap-

pears in the works by S. Ferenczi [2], A. Katok and J.-P. Thouvenot [3] and

uses symbolic encoding and Hamming metrics. Vershik’s approach is based on

the dynamics of functions of several variables, namely admissible semimetrics2

1 Note that the notion of a “universal” system is often used in a slightly different sense.

Sometimes it is only required to satisfy the second condition in Definition 1. In this

case, the question can be easily solved via the famous Krieger’s finite generator theorem

(see [5]): every ergodic automorphism T with entropy less than one can be realized in

the left shift on {0, 1}Z.
2 Occasionally the term “pseudometric” is used instead of “semimetric”.
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(see [14] for details). The theory of scaling entropy was developed by A. Vershik,

F. Petrov, and P. Zatitskiy in [7, 14, 18, 19]. Let us recall the basic concepts

and statements of this theory.

Let ρ : (X2, μ2) → [0,+∞) be a measurable semimetric on a measure

space (X,μ). That is, ρ is a non-negative symmetric function which is mea-

surable with respect to μ2 and satisfies the triangle inequality. For a positive ε,

we define its ε-entropy as follows. Let k be the minimal positive integer such

that X can be represented as a union of measurable subsets X0, X1, . . . , Xk

with μ(X0) < ε and diamρ(Xi) < ε for all i > 0. Put

Hε(X,μ, ρ) = log2 k.

If there is no such finite k, define

Hε(X,μ, ρ) = +∞.

We call a semimetric admissible if it is separable on some subset of full

measure. Properties of admissible semimetrics are studied in detail in [6, 14].

In particular, it is proved that a semimetric is admissible if and only if all its

ε-entropies are finite for all ε > 0.

Suppose that G � (X,μ) is a measure-preserving action of a countable

group G on a Lebesgue space (X,μ). For an element g ∈ G denote a shifted

semimetric g−1ρ :

g−1ρ(x, y) = ρ(gx, gy),

where x, y ∈ X . Evidently, if ρ is admissible, then g−1ρ is admissible as well.

Let us fix a sequence λ = {Sn}∞n=1 of non-empty finite subsets of G. Here

and in what follows, we call it the equipment of the group. A measurable

semimetric ρ is called generating if all its shifts by elements of
⋃
n Sn together

separate points up to a null set. This means that there exists a subset X0 ⊂ X

of full measure such that for any pair of distinct points x, y ∈ X0 there is an

element g ∈ ⋃
n Sn with g−1ρ(x, y) > 0. Note that any actual (measurable)

metric is always generating. Next, define a semimetric Gnavρ averaged by Sn in

a natural way:

Gnavρ(x, y) =
1

|Sn|
∑
g∈Sn

ρ(gx, gy), x, y ∈ X.

Sometimes we will emphasize the set over which the averaging is taken. In this

case, we will write GSn
av ρ instead of Gnavρ.
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Consider then the following function:

Φ(n, ε) = Hε(X,μ,G
n
avρ).

Actually, the function Φ(n, ε) depends on n, ε, and semimetric ρ. However, its

asymptotic behaviour is supposed to be independent of ρ and ε in some sense

(see [12, 13]). Let us recall a definition proposed in [7, 19].

Definition 2: Let G � (X,μ) be a measure-preserving action of a group G

equipped with λ and ρ be an admissible semimetric on (X,μ). We call a se-

quence {hn}∞n=1 a scaling entropy sequence of this action of the equipped

group G and the semimetric ρ if for all sufficiently small ε > 0 the following

asymptotic relation holds:

Hε(X,μ,G
n
avρ) 	 hn.

Here, for two functions φ(n) and ψ(n) relation φ(n) 	 ψ(n) means that there

are two positive constants c and C such that cφ(n) � ψ(n) � Cφ(n). Note

that it makes sense to consider the whole class of equivalent scaling entropy

sequences. Indeed, it is easy to see from Definition 2 that if {hn} is a scaling

sequence of the action and h′n 	 hn, then the sequence {h′n} is scaling as well.

We need some additional requirements on the equipment λ proposed in [19].

Definition 3: Equipment λ = {Sn} of a countable group G is called suitable

if for any g ∈ ⋃
Sn and δ > 0 there exists k ∈ N such that for all n ∈ N there

are g1, . . . , gk ∈ G with

∣∣∣∣gSn \
k⋃
j=1

Sngj

∣∣∣∣ � δ|Sn|.

Any left Følner sequence in an amenable group forms suitable equipment.

For an action of a suitably equipped group, P. Zatitskiy, proving a conjecture

by A. Vershik, showed that if a sequence {hn} is a scaling entropy sequence

for some summable generating admissible semimetric ρ, then it is a scaling

sequence for any other such semimetric [18, 19]. The summability of ρ means

that it has finite integral over X2, i.e., ρ ∈ L1(X2, μ2). In particular, any

bounded measurable semimetric is summable. Therefore, the class of scaling

entropy sequences does not depend on the choice of semimetric and forms a

measure-theoretic invariant of an action of a suitably equipped group. Note

that this class can be empty; this case is discussed in Section 2.2.
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We should note that a scaling entropy sequence may depend on the choice of

equipment. It is shown in [7] that under certain conditions for the equipment if a

scaling sequence exists, then one could choose a subadditive increasing function

f : N → N with hn 	 f(|Sn|). However, it is still unknown whether such f

can be chosen independently of the equipment. Moreover, it is unclear if the

stability (see Section 2.2) depends on the choice of equipment.

It is proved in [7] that in the case of one transformation (i.e., action of Z

with the standard equipment Sn = {−n, . . . , n}) if the class of scaling entropy

sequences is non-empty, then it contains an increasing subadditive function.

In [19], the explicit examples of automorphisms with a given increasing subad-

ditive scaling entropy sequence are given. In addition, the actions of
⊕

Z2 with

a given scaling sequence of an intermediate growth were constructed in [19].

This construction can be easily generalized to the case of the group
⊕

k Zrk for

an arbitrary family of positive integers {rk}.

2.2. Stable and unstable systems. Examples of almost complete

growth. It was recently shown by the author [10] that a scaling entropy se-

quence may not exist even for one automorphism. We will call a system stable

if its class of scaling entropy sequences is not empty. That is, in [10], the

examples of unstable ergodic systems were constructed.

However, the definition of scaling entropy (Definition 2) can be improved in

such a way that it works for unstable actions and is consistent with the scaling

sequence if the action is stable. Let us define an equivalence relation on the

set of functions from N× R+ to R+ that decrease with respect to their second

arguments. We say that Ψ and Φ are equivalent if and only if

(1) ∀ε > 0 ∃δ > 0 Ψ(n, ε) � Φ(n, δ) and Φ(n, ε) � Ψ(n, δ).

We denote the equivalence class of this relation containing Φ by [Φ]. Here and

in what follows, for two sequences φ(n) and ψ(n), we write φ � ψ if there is a

positive constant C such that

φ(n) � Cψ(n)

for all n ∈ N. We also write φ ≺ ψ if

φ(n) = o(ψ(n)).
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Let G � (X,μ) be a measure-preserving action of a suitably equipped

group (G, λ) and ρ be an admissible generating summable semimetric on (X,μ).

In [18, 19], it is proved (see Lemma 9 in [18] and similar statements in [19])

that the equivalence class of the function

Φρ(n, ε) = Hε(X,μ,G
n
avρ)

does not depend on a semimetric and forms an invariant H(X,μ,G, λ) of the

measure-preserving action:

(2) H(X,μ,G, λ) = [Φρ(n, ε)].

Note that the system is stable if and only if H(X,μ,G, λ) contains a func-

tion Φ(n, ε) = φ(n) independent of ε.

Scaling entropy may also depend on the choice of equipment. However,

if λ = {Sn} and θ = {Wn} are such that |Sn�Wn| = o(|Sn|), then

H(X,μ,G, λ) = H(X,μ,G, θ)

for any measure-preserving system (X,μ,G).

Theorem 2 below states that for any amenable group G equipped with a

Følner sequence λ = {Fn}, any Φ ∈ H(X,μ,G, λ), and any positive ε the

following asymptotic relation holds:

(3) Φ(n, ε) � |Fn|.

The equivalence in (3) holds if and only if the amenable measure entropy

of (X,μ,G) is positive. In [19], the examples of stable ergodic Z-actions whose

scaling entropy sequence (with respect to the standard equipment) hn grows

faster than a given function φ(n) = o(n) are given. In [3], similar constructions

are given for Z2.

Examples of such actions play the crucial role in further arguments, that is

we are looking for G-systems whose scaling entropy grows faster than a given

function φ(n) = o(|Fn|) at least along a subsequence, called actions of almost

complete growth (see Definition 4). The main theorem of this work (Theorem 4)

states that such ergodic actions exist for any countable non-periodic amenable

group with arbitrary Følner equipment. The non-existence of a universal zero

entropy system for such groups is proved in Theorem 1 by means of constructed

actions of almost complete growth.
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3. Scaling entropy and amenable measure entropy

In this section, we study the relation between the notions of scaling entropy

and amenable measure entropy.

Let us state several technical lemmas that we use in the proof of Theorem 2

below. Note that for any measurable partition ξ of a measure space (X,μ)

there is a naturally defined cut semimetric ρξ(x, y) which equals zero if x

and y both lie in the same cell of ξ and one otherwise. If the partition is

finite (or countable) up to a null set then the corresponding cut semimetric is

admissible. The following lemma (see [18]) links the ε-entropy of ρξ with the

Shannon entropy of ξ.

Lemma 1: The following relations between ε-entropy and Shannon entropy

hold:

(1) For any measurable partition ξ of a standard measure space (X,μ) and

any ε > 0

Hε(X,μ, ρξ) �
H(ξ)

ε
,

where ρξ is a semimetric corresponding to ξ.

(2) Let m, k ∈ N and {ξi}ki=1 be a family of finite measurable partitions of

(X,μ) such that each ξi consists of not more thanm cells. Let ξ=
∨k
i=1 ξi

be the refinement of these partitions and ρ = 1
k

∑k
i=1 ρξi be the averag-

ing of corresponding semimetrics. Then for any ε ∈ (0, 12 ) the following

estimate holds:

H(ξ)

k
� Hε(X,μ, ρ)

k
+ 2ε logm− ε log ε− (1 − ε) log(1− ε) +

1

k
.

The next lemma (see [7, Lemma 1]) gives an upper bound for the ε-entropy

of an averaged semimetric.

Lemma 2: Let ρ1, ρ2, . . . , ρk be admissible semimetrics on (X,μ) with ρi � 1

for all i = 1, . . . , k. Assume that ε ∈ (0, 1) satisfies Hε(X,μ, ρi) > 0. Then the

following inequality holds

H2
√
ε

(
X,μ,

1

k

k∑
i=1

ρi

)
� 2

k∑
i=1

Hε(X,μ, ρi).
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The theorem below relates notions of scaling entropy and classical measure

entropy for amenable groups. The similar result for one automorphism was

proved in [18].

Theorem 2: Let G � (X,μ) be a measure-preserving action of an amenable

group and λ = {Fn} be a Følner sequence in G. Choose some Φ ∈ H(X,μ,G, λ).

(1) Assume that the amenable measure entropy h(X,μ,G) is positive.

Then (X,μ,G) is stable and for all sufficiently small ε > 0

Φ(n, ε) 	 |Fn|.
(2) If h(X,μ,G) = 0, then for all positive ε

Φ(n, ε) = o(|Fn|).
Proof. Suppose that the classical entropy h(X,μ,G) is positive. Let ξ be a

finite measurable partition and

ζn =
∨
g∈Fn

g−1ξ.

Let ρξ be the cut semimetric corresponding to ξ. Also, for g ∈ Fn set ξg = g−1ξ

and m = |ξ| = |ξg|. Due to part 2 of Lemma 1, we have

(4)
H(ζn)

|Fn| � Hε(X,μ,G
n
avρξ)

|Fn| + 2ε logm− ε log ε− (1− ε) log(1 − ε) +
1

|Fn| .

Since h(X,μ,G) > 0, we can choose ξ satisfying

h(ξ) = lim
n→+∞

1

|Fn|H(ζn) > 0.

Hence, while ε is small enough, inequality (4) implies

(5) Hε(X,μ,G
n
avρξ) � |Fn|.

Note that ρξ may not be generating (it happens if and only if ξ is not gener-

ating). We can easily overcome this by adding some admissible metric ω to ρξ.

Evidently, ω + ρξ is now generating and

Ψ(n, ε) = Hε(X,μ,G
n
av(ρξ + ω))

lies in H(X,μ,G, λ). At the same time,

Ψ(n, ε) � Hε(X,μ,G
n
avρξ) � |Fn|.
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The upper bound for the asymptotics of the scaling entropy instantly follows

from Lemma 2. Indeed, let ρ � 1 be an admissible generating semimetric. Using

Lemma 2 for semimetrics g−1ρ, where g ∈ Fn, we obtain

H2
√
ε(X,μ,G

n
avρ) � 2|Fn|Hε(X,μ, ρ).

Therefore, for any Φ ∈ H(X,μ,G, λ) and any sufficiently small (and thus, as

well, for all) ε > 0,

Φ(n, ε) � |Fn|.
The first part is proved.

Now assume that h(X,μ,G) = 0. Consider a generating partition ξ with finite

entropy and the corresponding (generating) semimetric ρξ. Let ζn=
∨
g∈Fn

g−1ξ

be as above. The first part of Lemma 1 implies the following inequality:

Hε(X,μ,G
n
avρξ) � Hε(X,μ, ρζn) �

H(ζn)

ε
.

However, h(X,μ,G) = 0 means that

H(ζn) = o(|Fn|).
Therefore, for any Φ ∈ H(X,μ,G, λ) and any ε > 0

Φ(n, ε) = o(|Fn|).
The second part is proved.

4. Proof of the non-existence of a universal system

In this section, we prove the non-existence of a universal zero entropy system

for actions of a non-periodic amenable group. However, the proof that we

provide deals with a wider class which, we believe, coincides with the class of

all amenable groups.3

Definition 4: We say that a groupG equipped with λ={Fn} admits actions of

almost complete growth if for any non-negative function φ(n)=o(|Fn|) there
exists a measure-preserving system (X,μ,G) such that for any Φ ∈ H(X,μ,G, λ)

and for any sufficiently small ε the following holds:

Φ(n, ε) � φ(n) and Φ(n, ε) = o(|Fn|).
3 At least, it contains

⊕
Z2 which is a torsion group.
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By virtue of Theorem 2, the second condition in Definition 4 is equivalent

to h(X,μ,G) = 0 for amenable groups. Note that Definition 4 has a deep

connection with the notions of slow entropy [3] and measure-theoretical com-

plexity [2].

Theorem 3: Let G � (X, d) be a continuous action of an amenable group G

on a compact metric space. Suppose that G admits ergodic actions of almost

complete growth for some Følner equipment θ = {Wn}. Assume that for any

ergodic measure-preserving system (Y, ν,G) with zero entropy there exists an

invariant measure μ on X with

(X,μ,G) ∼= (Y, ν,G).

Then the topological entropy of (X, d,G) is positive.

Proof. We will prove the theorem by contradiction. Assume that htop(X,G)=0.

Then

sup
ε>0

lim sup
n→+∞

1

|Wn| log spn(d,Wn, ε) = 0.

Hence, for all ε > 0

lim sup
n→+∞

1

|Wn| log spn(d,Wn, ε) = 0.

It is clear that there exists a function φ(n) such that φ(n)
|Wn| → 0 and for any ε > 0

φ(n) � log spn(d,Wn, ε).

By the theorem assumption, G admits ergodic actions of almost complete

growth with respect to θ. Therefore, there exists an ergodic measure-preserving

action G
α
� (Y, ν) with zero entropy such that for any Φ ∈ H(Y, ν,G, θ) and

any sufficiently small ε

(6) Φ(n, ε) � φ(n).

Also by the theorem assumption, this action has a representation in the topo-

logical system (X, d,G). Hence, there exists an invariant measure μ on X with

(X,μ,G) ∼= (Y, ν,G).

In particular, scaling entropy classes H(Y, ν,G, θ) and H(X,μ,G, θ) coincide.

Note that the metric d on X is obviously admissible and summable. Therefore,

Hε(X,μ,G
n
avd) ∈ H(X,μ,G, θ).
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However,

Hε(X,μ,G
n
avd) � Hε(X,μ,G

n
maxd) � log spn

(
d,Wn,

ε

2

)
� φ(n),

and we have obtained a contradiction to (6).

In view of Theorem 3, it only remains to prove that non-periodic amenable

groups admit ergodic actions of almost complete growth to achieve our goal,

i.e., Theorem 1. The rest of the work is devoted to proving this.

5. Coinduced actions and scaling entropy

In order to construct the actions of almost complete growth, we implement the

procedure of coinduction.

5.1. Coinduced actions. Let us recall the construction of a coinduced action

(see, e.g., [4, p. 157]). Let G be a countable amenable group and H � G be a

subgroup of G. Let H
α
� (X,μ) be a measure-preserving action of H . Consider

the decomposition of G into a disjoint union of left cosets of H :

G =

∞⊔
i=0

giH,

where gi are some representatives of the cosets. For further convenience, we

choose g0 = e. Consider a measure space

(X
G�H , μ

G�H) =

∞∏
i=0

(Xi, μi),

where each (Xi, μi) is an isomorphic copy of (X,μ) corresponding to gi.

For x ∈ X
G�H and i ≥ 0, we denote the i-th coordinate of x by xi, xi ∈ Xi. For

any g ∈ G and any i ≥ 0, there are unique k(i, g) ∈ N ∪ {0} and h(i, g) ∈ H

with ggi = gk(i,g)h(i, g). Define a coinduced action CIndGH α of the group G on

a measure space X
G�H in the following way. Let x ∈ X

G�H , put

g(x)i = h(i, g−1)−1(xk(i,g−1)).

Once and for all, we fix a system of cosets representatives {gi}.
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Lemma 3: LetH be a subgroup of a countable amenable groupG and {W̃n}∞n=1

be a Følner sequence in G. Then there exists another Følner sequence {Wn}∞n=1

in G such that |Wn�W̃n| = o(|Wn|) and
Wn =

⋃
Sing

−1
i ,

where Sin ⊂ H satisfy the following condition. For any h ∈ H , ε > 0, the

inequality

|hSin�Sin| � ε|Sin|
holds for all sufficiently large n and for any i.

Proof. Consider some h ∈ H and n ∈ N. Let us denote by ε(n, h) the following

value:

ε(n, h) =
|hW̃n�W̃n|

|W̃n|
.

Due to the Følner condition, ε(n, h) goes to zero when h is fixed. Moreover,

each W̃n uniquely decomposes into a disjoint union
⋃
i S

i
ng

−1
i , where Sin are

some finite subsets of H . Let Ĩ(n, h) be a set of integers i such that

|hSin�Sin| > ε(n, h)
1
2 |Sin|.

Denote

E(n, h) =
⋃

i∈Ĩ(n,h)
Sing

−1
i .

The left multiplication by h preserves all right cosets Hg−1
i . Therefore,

|E(n, h)| =
∑

i∈Ĩ(n,h)
|Sin| < ε(n, h)

1
2 |W̃n|.

Let τ : H → N be an arbitrary enumeration of all elements of H . Define

Wn = W̃n \
⋃

h : ε(n,h)<2−τ(h)

E(n, h).

Clearly, sequence {Wn} is the desired one. Indeed, we have

|W̃n�Wn| �
∑

h: ε(n,h)<2−τ(h)

|E(n, h)| <
∑

h: ε(n,h)<2−τ(h)

ε(n, h)
1
2 |W̃n| = o(|W̃n|).

Since each term ε(n, h) is bounded by 2−τ(h) and tends to zero with respect

to n, the sum
∑
ε(n, h)

1
2 is dominated by the convergent series

∑
h 2

τ(h)
2 and,

therefore, goes to zero as n tends to infinity.
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Definition 5: A subset S of integer numbers is said to be ε-invariant for some

positive ε if it satisfies

|(S + 1)�S| < ε|S|.
Remark: Evidently, if H = Z in Lemma 3, then there exists a subsequence {nj}
such that all Sinj

are 1
j -invariant.

5.2. Scaling entropy of a coinduced action. In this section, we estimate

the scaling entropy of a coinduced action. We reduce the question about the

existence of almost complete growth actions for non-periodic amenable groups

to the case of the group Z which is considered in Section 6. Also, we use an

important technical Lemma 5 whose proof is postponed to Section 7.

Theorem 4: Let λ = {Fn}∞n=1 be a Følner sequence of a countable non-periodic

amenable groupG. Then the groupG admits ergodic actions of almost complete

growth with respect to λ.

Proof. Let h ∈ G be an element of infinite order in G and H = 〈h〉 be the

subgroup generated by h. Let {gi} be a system of representatives of left cosets

with g0 = e. Lemma 3 states that there is a sequence θ = {Wn} of finite subsets

of G with

(7) |Fn�Wn|= o(|Wn|) = o(|Fn|),
and

Wn =
⋃
Sing

−1
i ,

where Sin ⊂ H are such that for any ε > 0 and for any sufficiently large n

|hSin�Sin| � ε|Sin|.
Relation (7) implies that any measure-preserving action α of G satisfies

H(α, λ) = H(α, θ).

Thus, it suffices to prove that the group G equipped with θ instead of λ admits

ergodic actions of almost complete growth.

Let φ(n) be an increasing positive function which goes to infinity. We will

apply the following lemma proved in Section 6.
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Lemma 4: Suppose that a sequence {Sin}kni=1 of finite families of finite subsets

of Z is such that every Sin is 1
n -invariant. Let φ(n) be a sequence of positive

numbers with limn→∞ φ(n) = ∞. Then there exist an ergodic automorphism T

of a Lebesgue space (X,μ) and a subsequence {nj} such that for any generating

admissible summable semimetric ρ and sufficiently small ε > 0 the following

relation holds:

(8)
1

φ(nj)
≺ min
i=1,...,knj

Hε(X,μ, T
Si
nj

av ρ)

|Sinj
| � max

i=1,...,knj

Hε(X,μ, T
Si
nj

av ρ)

|Sinj
| ≺ 1.

Note that there are only finitely many Sinj
for each j. We apply Lemma 4

for the sequence of non-empty sets Sin given by Lemma 3. Let In be the set of

those indices i for which Sin is not empty and kn = |In|. Relation (8) implies,

in particular, that T has zero entropy and for any ε small enough for sufficiently

large j

(9)
|Sinj

|
φ(nj)

< H4ε(X,μ, T
Si
nj

av ρ) < |Sinj
|, i ∈ Inj .

Consider an action α = CIndGH T coinduced from H to the whole group G.

Let ρ̃ � 1 be an admissible metric on (X,μ). Define a semimetric ρ on (X,μ)
G�H

in the following way:

ρ(x, y) = ρ̃(x0, y0), x, y ∈ X
G�H .

Although G acts transitively on G�H, the semimetric ρ may not be generating.4

However, it does not really matter because we are only looking for lower bounds

for the scaling entropy. Since by the choice of the representatives g0 = e,

elements of H act on the first component of (X,μ)
G�H independently of other

coordinates. Thus, for all x, y ∈ X
G�H

ρ(hx, hy) = ρ̃(hx0, hy0).

Then

H
Si
nj

av ρ(x, y) = H
Si
nj

av ρ̃(x0, y0).

For each coset representative gi, define a semimetric ρi on (X,μ)
G�H by

ρi = giH
Si
nj

av ρ.

4 For example, if all S0
n are empty.



Vol. 253, 2023 NON-EXISTENCE OF A ZERO ENTROPY SYSTEM 731

Each ρi depends only on the i-th component:

ρi(x, y) = (H
Si
nj

av ρ)(g−1
i x, g−1

i y) = (H
Si
nj

av ρ̃)(xi, yi), x, y ∈ (X,μ)
G�H .

Hence, we can consider ρi as a semimetric on Xi. The averaging of ρ with

respect to Wnj can be expressed in terms of ρi as follows:

(10)

G
Wnj
av ρ =

1

|Wnj |
∑
i∈Inj

∑
s∈Si

nj

gis
−1ρ =

1

|Wnj |
∑
i∈Inj

gi
∑
s∈Si

nj

s−1ρ

=
1

|Wnj |
∑
i∈Inj

|Sinj
|giH

Si
nj

av ρ =
1∑

i∈Inj

|Sinj
|
∑
i∈Inj

|Sinj
|ρi.

The next step is to estimate the epsilon-entropy of the semimetric given

by (10). The proof of the following lemma will be given in Section 7.

Lemma 5: Suppose ε > 0 and φ > 1 are fixed. Consider a finite family of

admissible semimetric triples (Xi, μi, ρi), i = 1, . . . , k. Assume that {si}ki=1 are

such that φ−1si < H4ε(Xi, μi, ρi) < si. Define a semimetric ρ on

k∏
i=1

(Xi, μi) = (X,μ)

as a weighted averaging:

ρ(x, y) =
1
k∑
i=1

si

k∑
i=1

siρi(xi, yi),

where x = (x1, . . . , xk), y = (y1, . . . , yk). Then

(11) Hε4(X,μ, ρ) �
1

φ
ε3

k∑
i=1

H4ε(Xi, μi, ρi)− k − 1.

Since for large j inequalities (9) hold, we can apply Lemma 5 to semimet-

rics ρi, weights si = |Sinj
|, and φ = φ(nj). We obtain the following estimate:

(12)

Hε4(X
G�H , μ

G�H , G
Wnj
av ρ) � 1

φ(nj)
ε3

∑
i∈Inj

H4ε(X,μ,H
Si
nj

av ρ̃)− knj − 1

� 1

φ(nj)2
ε3|Wnj | − 2knj .
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Clearly, for any sequence ψ(n), which goes to infinity, there is an increasing φ(n)

also going to infinity with φ2(n) = o(ψ(n)). Note that kn = o(|Wn|), so we can

choose such φ with kn = o(φ(n)−2|Wn|). Therefore, the action α constructed

by such a slow growing sequence φ satisfies the following condition on scaling

entropy with respect to the equipment θ = {Wn}: For any Φ ∈ H(α, θ) and

sufficiently small ε > 0,

Φ(nj , ε) �
|Wnj |
ψ(nj)

, that is Φ(n, ε) � |Wn|
ψ(n)

.

Let us show that α has zero entropy. The right inequality in (8) combined with

Lemma 2 shows that Φρ(n, ε) = o(|Wn|). Although ρ may not be generating

with respect to θ, we can choose θ′ = {W ′
n} with |W ′

n�Wn| = o(|Wn|) such

that ρ is generating with respect to θ′. Hence, Φρ(n, ε) ∈ H(α, θ′) = H(α, θ)

and the amenable measure entropy of α is zero due to Theorem 2.

It only remains to prove that the constructed actions are ergodic. It is true

if the index of H is infinite. In this case, the ergodicity follows from the similar

argument as in the case of Bernoulli shift. Suppose that there is a non-trivial

invariant subset E ⊂ ∏∞
i=1Xi. This subset can be approximated by a cylinder

set C with μ(E�C) < ε, where ε is arbitrarily small. Evidently, for any g ∈ G

the set g−1C is cylinder as well and μ(g−1C�C) < 2ε. However, for any

cylinder C we can find an element g ∈ G such that the basements of C and g−1C

do not intersect and, therefore,

μ(g−1C ∩ C) = μ(C)2 < μ(C)− 2ε.

In the case of finite index, the coinduced action G
α
� (X,μ)

G�H itself may

not be ergodic. However α still has zero entropy. The automorphism T satisfies

inequality (9). Consider the ergodic decomposition of the product measure μ
G�H

into G-ergodic invariant components. Since α has zero entropy, almost all its

ergodic components have zero entropy as well.

Since H preserves the coset g0H = H and, therefore, acts independently on

the 0-coordinate, the standard projection π0 : (X,μ)
G�H → (X0, μ0) preserves

the H-invariance. Thus, the ergodic decomposition is projected to some de-

composition of μ into H-invariant measures. Since μ is H-ergodic, almost all

such projections have to coincide with μ. Let ν be one of those ergodic com-

ponents of μ
G�H that has entropy zero and π0(ν) = μ. We are left to prove a

lower bound for epsilon-entropy. Lemma 5 is not applicable here, but it can be
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replaced with a simpler argument. Let ρ̃, ρ, and ρi’s be as before and L be the

index of H . Since there are no more than L different Sin for each n and∑
i

|Sin| = |Wn|,

there exists some Si0n with |Si0n | � 1
L |Wn|. Applying this for n = nj , obtain

(13)

Hε(X
G�H , ν, G

Wnj
av ρ) � Hε(X

G�H , ν, L−1ρi0) � HLε(X
G�H , ν, ρi0)

= HLε(X
G�H , ν, gi0H

Si0
nj

av ρ) = HLε(X
G�H , ν,H

Si0
nj

av ρ)

= HLε(X,μ,H
Si0
nj

av ρ̃).

The first inequality in (13) holds since

G
Wnj
av ρ =

1

|Wnj |
∑
i

|Sinj
|ρi > L−1ρi0 .

The last two equalities follow from the invariance of ν and the fact that π0(ν)=μ.

Finally, using (9), we obtain

(14) Hε(X
G�H , ν, G

Wnj
av ρ) � HLε(X,μ,H

Si0
nj

av ρ̃) >
1

φ(nj)
|Si0nj

| � 1

Lφ(nj)
|Wnj |,

since Lε can be arbitrarily small. Then for a given function ψ(n) that goes to

infinity, we take φ(n) = o(ψ(n)). Inequality (14) gives that Hε(X
G�H , ν, G

Wnj
av ρ)

grows faster than
|Wnj

|
ψ(nj)

. The proof is completed.

6. Adic action on the graph of ordered pairs

6.1. Graph of ordered pairs. In order to construct ergodic actions of al-

most complete growth, we use the notion of the adic transformation (Vershik’s

automorphism) on the graph of ordered pairs. This graph was studied in detail

in [15] and [19].

Consider an infinite graded graph Γ = (V,E). The set of vertices V is a

disjoint union of the levels Vn = {0, 1}2n, n ≥ 0. The set of edges is defined

together with the coloring c : E → {0, 1} in the following way. Let vn ∈ Vn

and vn+1 ∈ Vn+1. The edge e = (vn, vn+1) belongs to E if and only if vn

is a prefix or a suffix of vn+1. We mark this edge (define c(e)) with 0 or 1

respectively. If vn simultaneously forms both a prefix and a suffix of vn+1, then

we draw two distinct edges between vn and vn+1 also marked with 0 and 1

respectively. The vertices vn and vn+1 are called the initial and terminal points

of e. We denote them by s(e) and r(e) respectively.
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A path in Γ is a sequence of edges {ei} such that s(ei+1)=r(ei) and s(ei)∈Vi.
On the set X of all infinite paths the cylinder topology is imposed in a natural

way. A Borel measure on X is called central if all possible beginnings of a path

have equal probabilities while the tail is fixed. It means that any two cylinder

sets whose corresponding finite paths have the same terminal vertex have the

same measure.

Define the adic transformation T on the path space X . Let x = {ei}∞i=0

be an infinite path. Find the minimal n with c(en) = 0. Transformation T

maps x to another path T (x) = {ui} defined in the following way. Let ui = ei

for i � n + 1, c(un) = 1, and c(ui) = 0 for all i < n (see Figure 1). If μ is a

central measure, then this transformation is defined on a subset of full measure

and forms an automorphism of the measure space (X,μ).

0010 1010

00 01 10 11

0
x

1
Tx

00101010

1

0

0

0

1

1

Figure 1. The adic transformation.

Now let σ = {σn} be a given sequence of zeroes and ones. Let us construct a

special central measure μσ on X . Note that any Borel measure μ on the path

space is uniquely determined by a coherent system {μn}, where each μn is a

measure on a space Xn of finite paths of length n. In terms of μn, the centrality

of μ means that for any n the measure μn only depends on the terminal vertex

of a path. Define then a measure νn on the n-th level Vn as follows:

νn(v) =
∑
x∈Xn,
r(x)=v

μn(x).

The coherent system of measures {νn} uniquely determines the central mea-

sure μ.
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Let us construct a sequence of finite subsets V σn ⊂ Vn. Let V σ0 = V0.

For n � 1, put V σn = {ab : a, b ∈ V σn−1} if σn = 1 and V σn = {aa : a ∈ V σn−1}
otherwise. Let νσn be the uniform measure on the finite set V σn ⊂ Vn. It is easy

to see that {νσn} forms a coherent system. Let μσ be the unique central measure

on X with the given coherent system {νσn} (see [19] for details).

In [19], it is proved that the system (X,μσ, T ) is stable with respect to

the standard equipment of the group Z. Moreover, it is shown that the se-

quence hn = 2s
σ(log n), where sσ(t) =

∑
i<t σi, is a scaling entropy sequence of

that system. In addition, for every σ with an infinite number of ones, the trans-

formation T is ergodic. The Kolmogorov–Sinai entropy of T is positive if and

only if there are only finitely many zeroes in σ. Lemma 4 of this work deals with

a more complicated system of sets over which we take an averaging. However,

we can restrict ourselves to establishing only lower bounds for epsilon-entropy.

Let x = {ei} ∈ X be an infinite path. We denote by bn(x) the vertex of

the n-th level which lies on x. By on(x) we denote the value of
∑n−1

i=0 c(ei)2
i.

It is easy to see that if on(x) < 2n − 1 then

bn(Tx) = bn(x) and on(Tx) = on(x) + 1.

Thus, we have described the construction of the graph of ordered pairs and

the adic transformation on its path space. Now we will use this construction to

prove Lemma 4.

6.2. Proof of Lemma 4. In order to prove Lemma 4, we construct spe-

cial measures μσ on the path space X . The adic transformation T on the

space (X,μσ) produces the desired automorphism. The idea is to choose an

appropriate σ in which zeroes occur rarely. We will determine the positions of

these zeroes inductively one by one. Note that for any σ with an infinite number

of zeroes, the adic transformation has entropy zero. Therefore, the right hand

side of inequality (8) holds automatically. Indeed, it follows from Theorem 2

and the fact that the sequence formed by all Sin satisfies the Følner condition.

It is sufficient to prove the left part of inequality (8) for an arbitrary admis-

sible summable semimetric (which may not be generating). Indeed, the simple

argument, which we have already used, shows that if it holds for some semimet-

ric, then it holds for any generating one as well. Let us once and for all fix the

cut semimetric ρ corresponding to a partition that separates paths according
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to their first vertices. That is

(15) ρ(x, y) =

⎧⎨
⎩
0 if b0(x) = b0(y);

1 if b0(x) = b0(y).

Note that by definition b0(x) = bn(x)on(x) for any n � 0.

It is also enough to prove that for some subsequence {nj}

(16)
|Sinj

|
φ(nj)

< Hε(X,μ, T
Si
nj

av ρ), i = 1, . . . , knj .

Indeed, applying this inequality to some function ω(n) = o(φ(n)) instead of φ

we obtain the desired relation (8).

Let us fix some positive ε < 1
10 . Suppose that we have already chosen p

numbers q1, . . . , qp and another p numbers n1, . . . , np such that (16) holds for

j = 1, . . . , p for any σ whose first zeroes are exactly q1, . . . , qp. Initially, we

take p = 0.

Without loss of generality, we can assume that all the sets Sin consist of posi-

tive numbers. For l > np, we can find n(l) such that all the sets {Sil}kli=1 lie in the

interval {0, . . . , 2n(l)−1}. Let N(l) = n(l)+2. For a binary word v∈VN , we will

denote its k-th entry by vk. Recall that for the semimetric ρ defined by (15), for

x, y ∈ X , the equality ρ(x, y) = 0 holds if and only if bN(x)oN (x) = bN (y)oN (y).

Thus,

T
Si
l

av ρ(x, y) =
1

|Sil |
∑
j∈Si

l

ρ(T jx, T jy)

=
1

|Sil |
|{j ∈ Sil : bN (T jx)oN (T jx) = bN(T

jy)oN (T jy)}|.

Consider the set AS
i
l = {0, 1}Si

l and the measure μσ
Si
l
on it defined as follows:

μσSi
l
(w) = μσ(x ∈ X : bN(T

jx)oN (T jx) = wj , j ∈ Sil ).

The mapping

Φ: x �→ (bN (T jx)oN (T jx))j∈Si
l

produces an isomorphism of semimetric triples (X,μσ, T
Si
l

av ρ) and (AS
i
l , μσ

Si
l
, ρH),

where ρH is a Hamming distance on AS
i
l . The next step is to construct an

appropriate uniform approximation of μσ
Si
l
. Note that for oN(x) < 2N − 2n we

have

Φ(x) = (bN(x)oN (x)+j)j∈Si
l

.
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Due to centrality of μσ, we have for any N > n

μσ(x ∈ X : oN(x) � 2N − 2n) = 2n−N .

Therefore, if l is fixed andN is large, then the measure μσ
Si
l
can be approximated

pointwise simultaneously for all i by the following measure:

(17)

μσSi
l ,N

(w) =
1

1− 2n−N
μσ(x : Φ(x) = w, oN (x) < 2N − 2n)

=
1

2N − 2n

2N−2n−1∑
k=0

νσN (v ∈ VN : vk+j = wj , j ∈ Sil ).

The last equality follows from centrality of μσ. Note that for N > n + 1, we

have the inequality μσ
Si
l ,N

< 2μσ
Si
l
everywhere on AS

i
l . Therefore,

(18) Hε(A
Si
l , μσSi

l
, ρH) � H2ε(A

Si
l , μσSi

l
,N , ρ

H).

Suppose that qp+1, which is not defined yet, is greater than N . Then any two

summands in the last sum in (17) whose difference in indices is a multiple of 2qp

coincide. It follows from the construction of νσN . Therefore,

μσSi
l
,N (w) =

1

2qp

2qp−1∑
k=0

νσN (v ∈ VN : vk+j = wj , j ∈ Sil ).

However, the epsilon-entropy of a semimetric with respect to a convex combi-

nation of measures can be estimated from below by the epsilon-entropy of this

semimetric with respect to one of these measures. Therefore, it suffices to pro-

vide a lower bound for the 2ε-entropy of (AS
i
l , μσ

Si
l ,N,k

, ρH) for k = 0, . . . , 2qp−1,

where

μσSi
l ,N,k

(w) = νσN (v ∈ VN : vk+j = wj , j ∈ Sil ).

Note that all components of w are divided into groups in such a way that all

coordinates in one group are the same, and distinct groups are independent

with respect to μσ
Si
l ,N,k

. Indeed, that is true for νN , and measure μσ
Si
l ,N,k

is a

projection of νN onto some chosen coordinates.

Now we will use that all Sil are 1
l -invariant sets. Each Sil consists of some

intervals of integer numbers. The 1
l -invariance of S

i
l means that the number of

these intervals does not exceed 1
l |Sil |. The number of different groups that have

points both inside and outside of a given interval does not exceed 2qp+1 because
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the length of each group is not greater than 2qp . Then the total number of

points in such groups does not exceed

(19)
2qp+1

l
|Sil | < l−

1
2 |Sil |,

if l > 22qp+2. We will call a component proper if it does not lie in the union of

such groups. Let ρ̃H be a Hamming metric on the proper coordinates. For l > 4,

we have

ρ̃H(x, y) � 1

1− l−
1
2

ρH(x, y) � 2ρH(x, y), x, y ∈ AS
i
l .

Since every set with ρH -diameter less than 2ε has ρ̃H-diameter less than 4ε, the

following inequality holds:

(20) H2ε(A
Si
l , μσSi

l ,N,k
, ρH) � H4ε(A

Si
l , μσSi

l ,N,k
, ρ̃H).

The right-hand side of formula (20) is exactly 4ε-entropy of a binary cube whose

dimension is at least |Sil |2−p−1. This value is not less than

(21) c(ε)
|Sil |
2p+1

>
|Sil |
φ(l)

for sufficiently large l. It only remains to choose np+1 = l which satisfies

condition (21) and the corresponding N . Then put qp+1 = N + 1.

7. Proof of Lemma 5

Let us proceed to the last step, which is the proof of Lemma 5, that we need

in order to complete the proof of the main theorem. First, we construct an

appropriate partition of each measure space (Xi, μi) with semimetric ρi. These

partitions provide a useful framework to deal with the epsilon-entropy of a

product space. Second, we apply some probabilistic estimates that lead to the

desired inequality.

For i = 1, . . . , k, denote by bi the value of 2
H4ε(Xi,μi,ρi). Since all the semimet-

rics ρi are admissible, they have finite ε2-entropies. Consider the corresponding

partition of Xi. Since (Xi, μi) is a continuous Lebesgue space, there exists a

refinement Y0, . . . , Yr of this partition which satisfies the following: for j > 0,

we have
diamρ(Yj) < ε2, μ(Y0) < 2ε2,

and
μ(Yj1 ) = μ(Yj2)

for all j1, j2 > 0.
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Consider the following procedure. Note that for any measurable Z ⊂ Xi

with μi(Z) < 4ε there exists a 2ε-separated set of size bi in the difference

Xi \Z. Put Z0=Y0 and choose the corresponding 2ε-separated set {p1, . . . , pbi}
in Xi \Z0. For each point pj find a cell Yj containing it and denote this cell

by ai1,j . Thus, we obtain a family {ai1,j}bij=1 of disjoint subsets. Let us denote

the union of these subsets by Ai1. Note that these sets satisfy the following

property. For any xi ∈ ai1,j1 , yi ∈ ai1,j2 with j1 = j2 the distance between xi

and yi is at least 2ε− 2ε2 > ε due to the triangle inequality. If μi(A
i
1) < ε, we

can choose Z1 = Z0 ∪Ai1 and similarly extract Ai2 from Xi \Z1 that is a union

of subsets ai2,j , j = 1, . . . , bi, satisfying the same property. Thus, we can repeat

this procedure until we obtain the following partition of (Xi, μi):

Xi =

mi⋃
l=0

Ail ,

where μi(A
i
0) � 1− ε and any Ail with l > 0 admits a decomposition

Ail =

bi⋃
j=1

ail,j

such that for any x ∈ ail,j1 and y ∈ ail,j2 the ρi-distance between x and y is

not less than ε, and all sets ail,j , l = 1, . . . ,mi, j = 1, . . . , bi, have the same

measure.

Now let us estimate the ε4-entropy of (X,μ, ρ) from below. Assume that a

set E ⊂ X with measure less than ε4 is given. We will look for a ε4-separated

set in its complement. For any point x = (x1, . . . , xk) ∈ X , we define a se-

quence w = w(x) ∈ ∏
i{1, . . . ,mi} of k non-negative integers {wr}kr=1 in the

following way:

xr ∈ Arwr
for r = 1, . . . , k.

Recall that the weights si’s that appear in the statement of Lemma 5 sat-

isfy φ−1si < log bi < si, where φ is a positive parameter. Let us fix an arbi-

trary w satisfying the inequality

(22)
∑
wr �=0

sr � ε2
k∑
i=1

si.
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Consider the following set Sw = {x ∈ X : w(x) = w}. It is easy to see that Sw

can be represented as the following disjoint union:

(23) Sw =
⋃

ir=1,...,br

a1w1,i1 × a2w2,i2 × · · · × akwk,ik ,

where we take the union over those indices ir for which wr = 0, and all the

factors corresponding to wr = 0 are equal to Ar0. We will call the subsets on the

right side of formula (23) the cells of Sw. Note that all the cells have the same

measure and, therefore, the desired inequality (11) reduces to the discrete case

as follows. For a point xi ∈ Arl , we denote the set arl,j containing xi by a
r
l (xi).

Let x, y ∈ Sw, then

(24)

ρ(x, y) � ε
k∑
i=1

si

∑
wr �=0

sr1{arwr
(xr) = arwr

(yr)}

� ε3∑
wr �=0

sr

∑
wr �=0

sr1{arwr
(xr) = arwr

(yr)}.

Assume that the subset E contains less than a half of the cells of Sw entirely.

Let us estimate from below the cardinality of the maximal ε4-separated set in

Sw \ E. Consider the set

P =
∏
wr �=0

{1, . . . , br},

where each point u = {ur}wr �=0 ∈ P corresponds to the cell of Sw with coordi-

nates ir = ur, and the semimetric ρ̃:

ρ̃(u, v) =
1∑

wr �=0

sr

∑
wr �=0

sr1{ur = vr}.

By (24), it is enough to estimate the cardinality of the maximal ε-separated set

in a subset of P that contains at least half of its points. Indeed, take a point

in each cell that is not entirely covered by E and consider the corresponding

points in P . Inequality (24) guarantees that the distances in this subset ofX are

estimated from below by corresponding distances in the corresponding subset

of P multiplied by ε3. To estimate the cardinality of the maximal ε-separated

set, it suffices to establish an upper bound for the measure of an ε-ball on the

space P with the uniform measure. Since the mutual distribution of coordinate

functions is uniform on
∏
wr �=0{1, . . . , br}, the random variables ur are mutually
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independent, and each ur is uniformly distributed on the set {1, . . . , br}. Thus,
it is enough to estimate the probability

(25)

P

{ ∑
wr �=0

sr1{ur =1}�ε
∑
wr �=0

sr

}
= P

{ ∑
wr �=0

sr1{ur=1}�(1−ε)
∑
wr �=0

sr

}

� P

{ ∑
wr �=0

log br1{ur=1}� 1−ε
φ

∑
wr �=0

sr

}

� 2−
(1−ε)

∑

wr �=0
sr

φ · E
( ∏
wr �=0

2log br1{ur=1}
)
.

The first inequality follows from the conditions for the weights. The second

inequality holds due to the exponential Chebyshev’s inequality. Let us estimate

the first factor:

(26)

2−
(1−ε)

∑

wr �=0
sr

φ � 2−
(1−ε)ε2

k∑

i=1
si

φ � 2−
(1−ε)ε2

k∑

i=1
log bi

φ

=

( k∏
i=1

bi

)− (1−ε)ε2

φ

�
( k∏
i=1

bi

)− ε3

φ

.

To estimate the second factor we use the independence of ur:

(27)
∏
wr �=0

E(b1{ur=1}
r ) �

k∏
i=1

(bi
bi

+
bi − 1

bi

)
� 2k.

Thus, the desired probability does not exceed (
∏k
i=1 bi)

− ε3

φ
2k. Therefore, the

size of the maximal ε4-separated set in Sw \E can be estimated from below by

the value 1
2 (
∏k
i=1 bi)

ε3

φ 2−k. Hence,

Hε4(X,μ, ρ) � log

(( k∏
i=1

bi

) ε3

φ

2−k−1

)
=

1

φ
ε3

k∑
i=1

H4ε(Xi, μi, ρi)− k − 1.

If the desired inequality (11) does not hold, then E must entirely contain at

least half of the cells of Sw for w satisfying condition (22) and, since all the cells

have the same measure, μ(Sw ∩ E) > 1
2μ(Sw) for such w. Let us estimate the
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measure of those x ∈ X that do not satisfy condition (22):

(28)

μ

{
x ∈ X :

k∑
i=1

si1{xi ∈ Ai0} � (1− ε2)

k∑
i=1

si

}

�
E

k∑
i=1

si1{xi ∈ Ai0}

(1− ε2)
k∑
i=1

si

=

k∑
i=1

siμi(A
i
0)

(1− ε2)
k∑
i=1

si

� 1− ε

1− ε2
� 1− ε

2
.

Therefore, the measure of those x ∈ X that satisfy condition (22) is at least ε
2 .

Hence, μ(E) � ε
4 , and we obtain a contradiction to the choice of the exceptional

set. The lemma is proved.
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