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NON–EXISTENCE OF A UNIVERSAL ZERO ENTROPY SYSTEM VIA

GENERIC ACTIONS OF ALMOST COMPLETE GROWTH

GEORGII VEPREV

Abstract. We prove that a generic p.m.p. action of a countable amenable group G has scaling
entropy that can not be dominated by a given rate of growth. As a corollary, we obtain that there
does not exist a topological action of G for which the set of ergodic invariant measures coincides
with the set of all ergodic p.m.p. G–systems of entropy zero.

We also prove that a generic action of a residually finite amenable group has scaling entropy
that can not be bounded from below by a given sequence. We also show an example of an
amenable group that has such lower bound for every free p.m.p. action.

1. Introduction

In this paper, we study generic p.m.p. actions of amenable groups. The main object we focus
on is the scaling entropy of an action — the invariant of slow entropy type proposed by A. Vershik
in [23, 24, 25]. This invariant is based on the dynamics of measurable metrics on the underlying
measure space and reflects the asymptotic behavior of the minimal epsilon-net of the averaged
metric. The scaling entropy invariant was studied in [13, 14, 22, 25, 30, 31]. We will give all the
necessary definitions in Section 2.2.

It turns out that some properties of the scaling entropy of a generic action can be established. In
particular, we show that its asymptotic behavior can not be bounded from above by any nontrivial
bound. For the case of a singe transformation, similar results were obtained in [1, 22]. Together
with the results from [21], this gives the negative answer to the Weiss’ question about the existence
of a universal zero entropy system (see [18, 21]) for all amenable groups.

Also, we study lower bounds for the generic growth rate of scaling entropy. In the case of a
residually finite group, the similar result holds true: there exists no non-constant lower bound for
the scaling entropy of a generic action. However, it is not true in general. It turns out that there exist
discrete amenable groups that have a scaling entropy growth gap meaning that the scaling entropy of
any free p.m.p. action of such a group has to grow faster than some fixed unbounded function. We
show an example of such a group in Section 5.2. Our example bases on the theory of growth in finite
groups, in particular the growth theorem by H. Helfgott (see [5]) and its generalizations from [15].
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1.1. Generic properties of group actions. Descriptive set theory applied to group actions is a
well studied concept in ergodic theory. We will give several definitions in order to set up notations.
For more details follow survey [10] by A. Kechris. Let Γ be a discrete countable group and (X,µ)
a Lebesgue space. Let Aut(X,µ) be the group of all invertible measure–preserving transformations
of (X,µ) endowed with the weak topology w with respect to which Aut(X,µ) is a Polish space.
The set of all p.m.p. actions of Γ on (X,µ) can be naturally identified with the space A(Γ, X, µ)
of all homomorphisms from Γ to Aut(X,µ). Clearly, A(Γ, X, µ) is a closed subset of the space
Aut(X,µ)Γ endowed with the product topology and, therefore, is Polish. Let us note that this
topology is generated by the family {Uγ,a,ε(α)}γ∈Γ,a⊂X,ε>0 of open neighbourhoods as prebase,
where α is a p.m.p. action of Γ. Each Uγ,a,ε(α) consists of those β ∈ A(Γ, X, µ) that satisfy
µ(β(γ)a△α(γ)a) < ε.

Every automorphism T ∈ Aut(X,µ) acts on A(Γ, X, µ) by conjugation: a 7→ TaT−1, a ∈
A(Γ, X, µ). It is shown in [4] that the conjugacy class of every free ergodic action of an amenable
group is dense in the weak topology of A(Γ, X, µ).

We say that a set P of Γ–actions is meager if its complement contains a dense Gδ subset
in A(Γ, X, µ). We call P generic (or comeager) if it contains a dense Gδ subset itself. It is well
known that, for example, the set of all ergodic free actions of a discrete amenable group Γ is generic,
as well as the set of all actions with zero measure entropy (see [4, 10]).

1.2. Universal systems. Universal dynamical systems appear in various contexts in lots of papers,
see [2, 18, 19, 21, 27, 28], for example. The exact definition of universality varies from paper to
paper. We will mainly follow the one given in [2] by T. Downarowicz and J. Serafin. Let G be an
amenable group and X a metric compact space on which G acts by homeomorphisms. A topological
system (X,G) is called universal for some class S of ergodic p.m.p. actions of G if the following two
conditions are satisfied. For any ergodic G–invariant measure µ on X the system (X,µ,G) belongs
to S and for any (Y, ν,G) ∈ S there exists a G–invariant measure µ on X such that (X,µ,G) is
measure–theoretically isomorphic to (Y, ν,G).

In view of the variational principle, the natural question about the existence of a universal system
for the class of all zero entropy systems appears in [18]. This question goes back to B. Weiss.

For the case of a single transformation, the negative answer to this question was given in [18] by
J. Serafin. His poof uses the notions of symbolic and measure–theoretic complexity of a dynamical
system (see also [3]) and constructions of systems with rapidly growing measure–theoretic complex-
ity. In [21], the author extends Serafin’s result to non-periodic amenable groups using the scaling
entropy invariant, constructions of Vershik’s automorphisms (see [26]), and coinduced actions.

As a corollary of the results of the present paper, we answer the Weiss’ question in full generality.

Theorem 1. Every infinite countable discrete amenable group does not admit a universal zero-

entropy system.

2. Slow entropy type invariants

2.1. Kushnirenko’s sequential entropy. As an intermediate step in our arguments we use the
following sequential entropy invariant introduced in [12], or rather its generalized version from [16].

Let P = {Pn} be a sequence of finite subsets in G and G
α
y (X,µ) be a p.m.p. action of G. For a

measurable partition ξ, define its sequential entropy as follows:

(1) hP (G, ξ) = lim sup
n

1

|Pn|
H





∨

g∈Pn

g−1ξ



.
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The sequential entropy along P of the action is the following supremum:

(2) hP (X,µ,G) = sup
ξ : H(ξ)<∞

hP (G, ξ).

2.2. Scaling entropy. In this section, we give a brief introduction to the theory of scaling en-
tropy. This invariant was introduced by A. Vershik in his papers [23, 24, 25] and was further
developed by F. Petrov and P. Zatitskiy in [13, 14, 30, 31]. The main Vershik’s idea is to consider
dynamical properties of functions of several variables, namely, measurable metrics and semimetrics
(quasimetrics).

Let us mention that the closely–related notions appear in several papers by S. Ferenczi (measure–

theoretic complexity, see, e. g., [3]) and A. Katok & J.-P. Thouvenot (slow entropy, see [7]). We refer
the reader to survey [8] for details on these invariants.

Throughout this paper, we use the following notations. For two sequences φ= {φ(n)}n and
ψ= {ψ(n)}n of positive numbers, we write φ - ψ if the asymptotic relation φ(n) = O(ψ(n)) is
satisfied. We write φ ≍ ψ if both inequalities φ - ψ and ψ - φ hold and φ ≺ ψ if φ(n) = o(ψ(n)).

2.2.1. Epsilon–entropy and measurable semimetrics. Consider a measurable function ρ : (X2, µ2) →
[0,+∞). We call ρ a measurable semimetric if it is non–negative, symmetric, and satisfies the
triangle inequality. For a positive ε, the ε–entropy of the semimetric ρ is defined in the following
way. Let k be the minimal positive integer such that the space X decomposes into a union of
measurable subsets X0, X1, . . . , Xk with µ(X0) < ε and diamρ(Xi) < ε for all i > 0. Put

(3) Hε(X,µ, ρ) = log2 k.

If there is no such finite k, we define Hε(X,µ, ρ) = +∞.
We call a semimetric admissible if it is separable on some subset of full measure. It turns out

(see [13]) that a semimetric is admissible if and only if its ε–entropy is finite for any ε > 0. In this
paper, we consider only admissible semimetrics. A simple example of such a semimetric is so-called
cut semimetric ρξ corresponding to a measurable partition ξ with finite Shannon entropy. That is,
ρ(x, y) = 0 if both points x, y ∈ X lie in the same cell of ξ, and ρ(x, y) = 1 otherwise.

The space Adm(X,µ) of all summable admissible semimetrics is a convex cone in L1(X2, µ2).
Define the following m–norm on a linear subspace of L1(X2, µ2) containing Adm:

(4) ‖f‖m = inf{‖ρ‖L1(X2,µ2) : ρ(x, y) > |f(x, y)|, µ2–a.s.},

where the infimum is computed over all measurable semimetrics ρ, see [13, 30] for details.

2.2.2. Scaling entropy of a group action. Let G be a countable amenable group with some given
Følner sequence λ = {Fn} which we will call equipment of the group G. We will refer to the
pair (G, λ) as an equipped group. Let us remark right away that the scaling entropy invariant is well
defined beyond amenable groups and Følner sequences. The only assumption one needs to make is
the requirement of equipment to be suitable (see [31] for details), a sequence of increasing balls in
a finitely generating group may be viewed as an example. However, we restrict our considerations
to the case of amenable groups since we will deal only with them in this paper.

Suppose that G
α
y (X,µ) is a p.m.p. action of G on a Lebesgue space (X,µ). For a measurable

semimetric ρ and an element g ∈ G, let g−1ρ denote a translation of ρ: g−1ρ(x, y) = ρ(gx, gy),
where x, y ∈ X . Note, that if ρ is admissible, then g−1ρ is admissible as well. A semimetric is said
to be generating if all its translations together separate points of the measure space up to a null set.
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Consider the average of ρ over Fn

(5) Gn
avρ(x, y) =

1

|Fn|
∑

g∈Fn

ρ(gx, gy), x, y ∈ X.

We will also denote the same semimetric (5) by the symbol GFn
av ρ emphasizing the set of elements

used to compute the average and αn
avρ emphasizing the action. Consider the following function:

(6) Φρ(n, ε) = Hε(X,µ,G
n
avρ).

By definition, Φρ(n, ε) depends on n, ε, and the semimetric ρ. However, its asymptotic be-

haviour in n is supposed to be independent of ρ and ε in some sense (see [24, 25]). The strongest
form of such independence corresponds to the following notion from [13, 30]. A sequence {hn}
is called a scaling entropy sequence for ρ if Φρ(n, ε) ≍ hn for all sufficiently small ε > 0. P. Za-
titskiy showed in [30, 31] that if a sequence {hn} is a scaling entropy sequence for some generat-
ing ρ ∈ Adm, then it is also a scaling entropy sequence for any other such semimetric. Hence, the
class of all scaling entropy sequences forms an invariant of the action. This invariant was studied
in [13, 14, 20, 25, 30, 31].

Although there are a lot of nice nontrivial cases where the scaling entropy sequence can be
computed (see, e. g., [31]), it does not always exist in this strong form, as shown in [20]. In order
to cover all of the cases, we use more general approach. We consider the set of functions mapping
N× R+ to R+ that decrease in their second arguments. Then we extend the relation - to this set
by setting for two functions Φ and Ψ

(7) Φ - Ψ ⇐⇒ ∀ε > 0 ∃δ > 0 Φ(n, ε) - Ψ(n, δ).

We call Φ and Ψ equivalent (and write Φ ≍ Ψ) if both relations Φ - Ψ and Ψ - Φ are satisfied.
The Zatitskiy’s invariance theorem from [30, 31] states that for any two generating semimetrics ρ
and ω in Adm the following equivalence takes place: Φρ ≍ Φω. Therefore, the equivalence class
H(X,µ,G, λ) = [Φρ] is an invariant of a p.m.p. action of an equipped group. We call this class the

scaling entropy of the action. We will also write H(α, λ) referring to the scaling entropy of a p.m.p.
action α.

Also, we write Φ ≺ Ψ if there exists δ > 0 such that for any ε > 0 we have Φ(n, ε) ≺ Ψ(n, δ).
Clearly, relations ≺ and - agree with the equivalence relation ≍ and induce partial orders on the
set of equivalence classes.

3. Main results

In this paper, we study the scaling entropy of a generic action. In Section 4, we look for p.m.p.
actions whose scaling entropy can not be bounded by a given function. In [21], such actions are
called actions of almost complete growth and constructed explicitly for any non–periodic amenable
group G. Such explicit constructions for general amenable groups are unknown. We prove that
actions of almost complete growth are generic in the following sense.

Theorem 2. Let G be a countable amenable group and λ = {Fn} be a Følner sequence in G. Let

φ(n) = o(|Fn|) be a sequence of positive real numbers. Then the set of all zero-entropy ergodic

p.m.p. actions of G that satisfy

(8) Φ(n, ε) 6- φ(n) for sufficiently small ε > 0,

where Φ ∈ H(α, λ), contains a dense Gδ-subset in A(G,X, µ).
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We also study lower bounds for the scaling entropy of a generic action. For any residually finite
group the similar result holds true.

Theorem 3. Let G be an infinite countable residually finite amenable group with a Følner se-

quence λ and φ(n) a function with limn φ(n) = ∞. Then the set of all p.m.p. G–actions satisfying

H(α, λ) ≻ φ is meager.

However, there exist groups with the property that the scaling entropy of any free p.m.p. action
has to grow faster than a given function. We call this property a scaling entropy growth gap. In
Section 5.2, we give an example of such a group (Theorem 14) and prove that this property does
not depend on the choice of Følner sequence.

4. Generic actions of almost complete growth

4.1. Sequential entropy of generic actions. In [16], V. Ryzhikov proves that the set of all
automorphisms T ∈ Aut(X,µ) such that hP (T ) = +∞ contains a dense Gδ subset of Aut(X,µ)
provided min{|x − y| : x, y ∈ Pn, x 6= y} goes to infinity. We use this approach to obtain the
following proposition.

Proposition 4. Let G be a countable amenable group and {P l
n}l=1,...,kn

n=1,...,∞ be a family of finite subsets

of G such that for any finite K ⊂ G, any sufficiently large n, and g, h ∈ P l
n we have gh−1 6∈ K for

all l = 1, . . . , kn. Then the set of all actions of G on (X,µ) satisfying

(9) sup
ξ

lim sup
n

min
l=1,...,kn

1

|P l
n|
H





∨

g∈P l
n

g−1ξ



 = +∞,

where supremum is computed over all finite measurable partitions, is comeager.

Proof. Let {ξi}∞i=1 be a dense family of finite measurable partitions of (X,µ). Consider a countable
dense family {αq}q∈I of Bernoulli G–actions. Such family exists in the conjugacy class of any
Bernoulli action. For any q ∈ I and any k > 0 there exists some jk,q > k such that for any j > jk,q

(10) R(αq, ξi, j) = min
l=1,...,kj

1
∣

∣P l
j

∣

∣

H





∨

g∈P l
j

αq(g)
−1ξi



 > H(ξi)−
1

k
, i = 1, . . . , k.

Indeed, since αq is Bernoulli, every partition ξi can be approximated by a cylindrical partition
whose translations over P l

j are independent for sufficiently large j and l = 1, . . . , kj due to our

assumptions on family {P l
j}. Since the function R(α, ξi, jk,q) is weakly continuous in α, the set Uk,q

of all p.m.p. actions α ∈A(G,X, µ) satisfying R(α, ξi, jk,q) > H(ξi) − 1
k for every i = 1, . . . , k is

weakly open. Consider then the following set

(11) W =
⋂

k

⋃

q

Uk,q.

Clearly, W is Gδ, contains every αq, and, therefore, is dense. Every action in W satisfies the
desired condition (9). Indeed, for α ∈ W , for every i > 0 and every k > i, there is some q(k)
such that R(α, ξi, jk,q(k)) > H(ξi)− 1

k . Hence, lim supnR(α, ξi, n) > H(ξi) and, since {ξi} is dense,
supξ lim supnR(α, ξ, n) = +∞. �
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4.2. Proof of Theorem 2 and non–existence of a universal zero-entropy system. In this
section, we prove Theorem 2 and obtain Theorem 1 as its corollary. We find it easier to verify
desired generic properties for sequential entropy first and then transfer them to scaling entropy
having certain relations between these two invariants in hand. Finally, the scaling entropy invariant
has deeper connections to the topological entropy that play its role in proving the non–existence of
a universal zero entropy system. The direct proof without sequential entropy also seems possible.
It would, however, involve some technical details that we would like to avoid.

We proceed with the following proposition connecting sequential entropy in the sense of Propo-
sition 4 to the scaling entropy of the action.

Proposition 5. Consider for every integer n a family {P l
n}l=1,...,kn of finite disjoint subsets of

a countable group G such that Fn = ∪kn

l=1P
l
n is a Følner sequence. Assume that for some p.m.p.

action α of G

(12) sup
ξ

lim sup
n

min
l=1,...,kn

1

|P l
n|
H





∨

g∈P l
n

g−1ξ



 > 0.

Then for any Φ ∈ H(α, λ), where λ = {Fn},

(13) Φ(n, ε) 6≺ |Fn|
kn

for any sufficiently small ε > 0.

Proof. Consider a finite partition ξ satisfying relation (12), and let c be the corresponding value

of the left hand side. Let ρξ be the corresponding cut semimetric. Let F̃n ⊂ Fn be the union of
those P l

n that satisfy

(14)
∣

∣P l
n

∣

∣ >
|Fn|
2kn

.

Let Ln be the set of corresponding indices l-s. One may easily see that |F̃n| > 1
2 |Fn|. Hence,

GF̃n
av ρξ(x, y) 6 2GFn

av ρξ(x, y) for any x, y ∈ X . Therefore,

(15) Hε(X,µ,G
Fn

av ρξ) > H2ε(X,µ,G
F̃n

av ρξ).

Then we use the following lemma, which is proved in [14], to estimate H2ε(X,µ,G
F̃n
av ρξ) from below.

Lemma 6. Let ρ1, . . . , ρk be admissible semimetrics on (X,µ) such that ρi(x, y) 6 1 for all i 6
k, x, y ∈ X. Let ρ̃ = 1

k (ρ1 + . . .+ ρk). Then there exists some m 6 k such that

(16) H2
√
ε(X,µ, ρm) 6 Hε(X,µ, ρ̃).

It is easy to see that the same result holds for a convex combination ρ̃ =
∑

i αiρi, where αi > 0,
α1 + . . .+ αk = 1. In our case, we have

(17) GF̃n

av ρξ =
∑

l∈Ln

∣

∣P l
n

∣

∣

|F̃n|
G

P l
n

av ρξ.
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Thus, there exists some l ∈ Ln such that H2ε(X,µ,G
F̃n
av ρξ) > H2

√
2ε(X,µ,G

P l
n

av ρξ). Suppose that n
is such that

(18) min
l=1,...,kn

1

|P l
n|
H





∨

g∈P l
n

g−1ξ



 >
c

2
.

We use the following lemma from [30] that connects ε–entropy to the classical Shannon entropy.

Lemma 7. Let m, k ∈ N and {ξi}ki=1 be a family of finite measurable partitions each having no more

than m cells. Let ξ =
∨k

i=1 ξi be the common refinement of these partitions and ρ = 1
k

∑k
i=1 ρξi be

the average of corresponding semimetrics. Then for any ε ∈ (0, 12 ) the following estimate holds:

(19)
H(ξ)

k
6

Hε(X,µ, ρ)

k
+ 2ε logm− ε log ε− (1− ε) log(1 − ε) +

1

k
.

Let m = |ξ|, ξg = g−1ξ, where g ∈ P l
n. According to Lemma 7, we have

(20) H2
√
2ε(X,µ,G

P l
n

av ρξ) > H4
√
ε(X,µ,G

P l
n

av ρξ) >
∣

∣P l
n

∣

∣

( c

2
− 8

√
ε logm− δ(4

√
ε)
)

− 1,

where δ(ε) = −2ε log ε−2(1−ε) log(1−ε), which tends to zero when ε goes to zero. Then, choosing ε

sufficiently small depending only on c and m = |ξ|, we obtain H4
√
ε(X,µ,G

P l
n

av ρξ) >
c
4

∣

∣P l
n

∣

∣. Since
∣

∣P l
n

∣

∣ > |Fn|
2kn

by assumption (14), we obtain

(21) Hε(X,µ,G
Fn

av ρξ) > H4
√
ε(X,µ,G

P l
n

av ρξ) >
c

4

∣

∣P l
n

∣

∣ >
c

8
· |Fn|
kn

.

Thus, at least along some subsequence Hε(X,µ,G
Fn
av ρξ) &

|Fn|
kn

, and that completes the proof. �

Proof of Theorem 2. It suffices to construct a family {P l
n}l=1,...,kn

n=1,...,∞ of finite subsets of G satisfying

assumptions of Proposition 4 and such that |Fn|
kn

≻ φ(n). Then the desired result follows from
Proposition 5.

Let K be a finite subset of G. Consider a locally finite graph ΓK = (G,EK), where (g, h) belongs
to EK if and only if either gh−1 ∈ K or hg−1 ∈ K. Clearly, the degree of each vertex in ΓK does
not exceed 2|K|. Therefore, there exists a proper vertex coloring of ΓK into rK = 2|K|+ 1 colors,
that is, a partition of all vertices into rK parts such that any two adjacent vertices belong to different
parts. Indeed, one may color vertices one by one; each time there is at least one color available
since no more than 2|K| colors are prohibited. Hence, we obtain a decomposition G =

⋃rK
l=1 C

l
K ,

where Cl
K are mutually disjoint and gh−1 6∈ K for any l 6 rk and any g, h ∈ Cl

K .
Take a sequence of increasing finite subsets exhausting the entire group: K1 ⊂ K2 ⊂ . . . ⊂

⋃

Ki = G. Now let i(n) be a non-decreasing sequence of positive integer parameters with lim i(n) =
+∞, which we will define later. Put

(22) P l
n = Fn ∩ Cl

Ki(n)
, l = 1, . . . , rKi(n)

.

Clearly, the family {P l
n} satisfies the assumptions of Proposition 4. Since by assumptions of The-

orem 2 the sequence |Fn|
φ(n) goes to infinity, we can chose a piecewise constant sequence i(n), also

tending to infinity, such that kn = rKi(n)
≺ |Fn|

φ(n) . Therefore, |Fn|
kn

≻ φ(n) as desired. �

Of course, the genericity implies existence, and we obtain the following corollary.
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Corollary 8. Any countable amenable group admits actions of almost complete growth with respect

to any Følner sequence.

To finish the proof of Theorem 1, it only remains to recall the following theorem proved in [21].

Theorem 9. Suppose that an amenable group G admits ergodic actions of almost complete growth

for some Følner equipment. Then G does not have a universal zero-entropy system.

As a consequence we obtain that there does not exist a universal zero entropy system for any
countable amenable group; that is, the Weiss’ question is solved in full generality.

5. Generic lower bounds and scaling entropy growth gap

Let us recall that a unitary representation of a discrete group is called compact if every vector has
a precompact orbit. A p.m.p. action is called compact if the corresponding Koopman representation
is compact. It is shown in [13] that for the group Z this property is equivalent to the boundedness

of the scaling entropy. In fact, the same proof works for the case of an amenable group with Følner
equipment. One may see [29], for instance.

5.1. Absence of a generic lower bound for residually finite groups. Any countable residu-
ally finite amenable group admits a compact free p.m.p. action and, therefore, has an action with
bounded scaling entropy, that is, the scaling entropy with the slowest growth possible. Indeed,
one may consider an infinite product of finite approximations endowed with the natural product
measure. The reverse implication is not true in general: the group of all dyadic rotations of a unit
circle, for example, is not residually finite and, nevertheless, has a compact free action. However,
the converse implication is true for finitely generated groups.

Claim 10. A finitely generated group admits a compact free action if and only if it is residually

finite.

Proof. Let α be a compact p.m.p. action of a group G and π its Koopman representation. Any
compact action of a discrete group decomposes into direct sum of finite-dimensional representations
(see, e. g., [9]). Therefore, π =

⊕

τi and dim τi = ni <∞. The full image of τi is a finitely generated
subgroup in GLni

(C). Hence, τi(G) is residually finite due to Maltcev’s theorem. Since the action α
is free, the group G is residually finite as well. �

Theorem 11. Let G
α
y (X,µ) be a free ergodic p.m.p. action of an amenable group G and

λ = {Fn} be a Følner sequence in G. Let φ(n) be a non-negative function satisfying φ ≻ H(α, λ).
Then the set of all free p.m.p. actions β of G with H(β, λ) ≻ φ is meager.

Applying Theorem 11 to a compact action of a residually finite amenable group, we obtain
Theorem 3.

Proof. Consider a dense sequence of finite measurable partitions {ξi}∞i=1 of (X,µ) and a measurable
metric ρ =

∑∞
i=1

1
2i ρξi . Let {αq} be a countable dense family of G–actions from the conjugacy class

of α. Also, fix a monotone sequence {εr} of positive numbers tending to zero. For any q and k
there exists a jk,q such that

(23) H εk
4
(X,µ, (αq)

jk,q

av ρ) <
1

k
φ(jk,q).

Consider a neighbourhood Uk,q of αq such that for every β ∈ Uk,q the following holds true

(24) Hεk(X,µ, β
jk,q
av ρ) <

1

k
φ(jk,q).
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Such Uk,q does indeed exist due to the following lemma from [30].

Lemma 12. Assume that ‖ρ1 − ρ2‖m < ε2/32, where ρ1, ρ2 ∈ Adm(X,µ) and ε > 0. Then the

inequality Hε(X,µ, ρ1) < Hε/4(X,µ, ρ2) holds true.

Indeed, having Lemma 12 in hand, we can uniformly approximate ρ by a partial sum
∑r

i=1
1
2i ρξi .

Then the desired inequality (24) is achieved provided µ(β(g−1)C△αq(g
−1)C) is sufficiently small

for every set C being a cell of ξi, where i 6 r, g ∈ Fjk,q
.

Then consider the following Gδ–set:

(25) W =
⋂

k

⋃

q

Uk,q.

Consider any β ∈W and any integer number r. Then for any k > r there exists qk such that

(26) Hεr (X,µ, β
jk,qk
av ρ) 6 Hεk(X,µ, β

jk,qk
av ρ) <

1

k
φ(jk,qk ).

Since ρ is an admissible metric, the function Φ(n, ε) = Hε(X,µ, β
n
avρ) belongs to the scaling entropy

class H(β, λ). Therefore, any β ∈ W satisfies H(β, λ) 6≻ φ(n) due to inequality (26). �

Remark. We did not really use the Følner property of equipment λ while proving Theorem 2 and
Theorem 11. The same results are also valid if we assume λ to be only suitable (see [31]). The
essential part is, however, that the group itself is amenable. It is unknown to the author if there
are similar results for non-amenable groups.

5.2. Example of a group with a scaling entropy growth gap. In view of Section 5.1 and
Theorem 3, one may wonder if it is always the case that the scaling entropy of a generic action
grows arbitrarily slow (along a subsequence, of course). We already know that it is true provided
the group possesses a compact free action, but it is unclear for groups without such actions. We
say that a group G has a scaling entropy growth gap with respect to equipment λ if there exists
a function φ(n) tending to infinity such that H(α, λ) % φ for every free p.m.p. action α of the
group G. In this section we show that there exists a group with a scaling entropy growth gap.

Let G = SL(2,Fp) be the group of all 2 × 2–matrices with determinant 1 over the algebraic
closure of a finite field Fp, where p > 2 is a prime number. Clearly, G is countable, and it can
be presented as a union of increasing finite subgroups G =

⋃∞
n=1Gn, where each Gn = SL(2,Fqn)

and Fqn is a finite extension of Fqn−1 .
We will use the following Growth Theorem, initially proved in [5] by H. Helfgott for SL(2,Fp)

and then generalized to the following result (see [15]).

Theorem 13. Let L be a finite simple group of Lie type of rank r and A a generating set of L.

Then either A3 = L or |A3| > c|A|1+δ, where c and δ depend only on r.

Theorem 14. The group G = SL(2,Fp) with equipment λ = {Gn} admits scaling entropy growth

gap. The function φ(n) = log(qn) is the desired lower bound.

Proof. Consider a free p.m.p. action G y (X,µ). Take some non-trivial element g0 from G1 =
SL(2,Fp), let us take g0 =

(

1 1
0 1

)

, for instance. Since g0 has order p and the action is free, there exists

a measurable partition ξ of (X,µ) into p cells such that ξ(x) 6= ξ((g0)
ix) for every i = 1, . . . , p− 1.

That is, each cell of ξ contains exactly one point from each g0–orbit. Let ρξ be the cut semimetric
corresponding to ξ.

Suppose that Hε2(X,µ,G
n
avρξ) < log k and let X0, X1, . . . , Xk be the corresponding decompo-

sition. Since Gn is finite, the measure space decomposes as (Gn, ν) × (Y, η), where the action
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of Gn preserves the second component. Since the exceptional set X0 has measure less than ε2,
the η-measure of those y-s that satisfy |Gn × {y} ∩ X0| > ε|Gn| is less than ε. The restriction
of Gn

avρξ to each Gn–orbit is Gn–invariant and can be obtained by averaging the restriction of ρξ.
The restriction of ρξ to a Gn–orbit corresponds to its partition into p parts of equal size. Hence, the
restriction of ρξ has mean value at least 1

2 as well as its average since averaging preserves L1–norm.
All of the above implies that there exits at least one Gn–orbit with an invariant metric that has
ε–entropy (with respect to uniform measure) less than log k and L1–norm of at least 1

2 . It suffices
to prove the following.

Claim 15. Let ρ be a left–invariant semimetric on SL(2,Fq) with diameter greater than 3ε, where

ε ∈ (1, 12 ). Then Hε(SL(2,Fq), ν, ρ) > c log q, where ν is the uniform probability measure and c is

an absolute constant.

Indeed, we can identify the orbit that we found above with the group SL(2,Fqn) with the left–
invariant semimetric which has diameter at least 1

2 . Applying Claim 15, we obtain log k > c log qn
and complete the proof.

In order to prove Claim 15, we can assume that q is sufficiently large depending only on δ, which
is an absolute constant since the rank r = 2. Also, assume that Hε(SL(2,Fq), ν, ρ) < c log q. Then
at most qc balls of radius ε cover the entire group except a part of size ε|SL(2,Fq)|. Since the
semimetric ρ is left–invariant, all balls with the same radius have the same size. Therefore, the size
of each ball is at least 1

2qc |SL(2,Fq)|. Let B = B(ε) be the ball of radius ε with center at identity.

Since the diameter of the group is greater than 3ε, the product B(ε) ·B(ε) ·B(ε) ⊂ B(3ε) does not
cover the whole group. Therefore, due to the Growth Theorem 13, we have two options. Either
|BBB| > |B|1+δ, or the ball B does not generate SL(2,Fq). In the first case, we have

(27) |SL(2,Fq)| > |BBB| > 1

21+δqc(1+δ)
|SL(2,Fq)|1+δ.

Hence,

(28) qc(1+δ) >
1

21+δ
|SL(2,Fq)|δ >

1

21+δ
qδ

and, therefore, c > δ
2+2δ provided q is sufficiently large.

In the last case, the subgroup H generated by B contains at least 1
2qc |SL(2,Fq)| elements and,

hence, has index smaller than 2qc. Note that all non-trivial irreducible representations of SL(2,Fq)

over C have dimension of at least q−1
2 , see [6, 17]. However, the unitary representation correspond-

ing to the permutation action of SL(2,Fq) on SL(2,Fq)/H has dimension less than 2qc implying
that c > 1

2 .

In both cases, we have c > δ
2+2δ , therefore, Hε(SL(2,Fq), ν, ρ) > δ

2+2δ log q, and the claim is
proved. �

Notably, the logarithmic bound from Theorem 14 is sharp. For any groupG that can be presented
as an increasing union of finite groups Gn, one can define the following p.m.p. action. Let Cn =
{gjn}kn

j=1 be the set of right coset representatives of Gn−1\Gn endowed with uniform measure µn.

Each finite product space
∏n

i=1(Ci, µi) can be identified with the group Gn with the uniform
measure and, therefore, carries a p.m.p. action of Gn. Since these actions of Gn-s agree, we obtain
a p.m.p. action of G on the whole product space (X,µ) =

∏∞
i=1(Ci, µi), where each subgroup Gn

preserves all the components starting from n+ 1.
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Take ρ =
∑

i 2
−iρi, where each ρi is the cut semimetric distinguishing first i components. Clearly,

ρ is an admissible metric, and for any n > r the average Gn
av

∑

i<r 2
−iρi does not depend on

coordinates starting from n + 1. Therefore, there exists a partition into |Gn| cells, each of which
has diameter zero with respect to Gn

av

∑

i<r 2
−iρi. Hence, for any positive ε, the ε–entropy of Gn

avρ

is bounded from above by log |Gn| for sufficiently large n. For the case of G = SL(2,Fp), we have
q < SL(2,Fq) < q4. Hence, log |Gn| ≍ log qn, and the bound is sharp.

Also, looking through the proof of Theorem 14, one may see a stronger alternative. For every
(not necessarily free) p.m.p. action of SL(2,Fp), its scaling entropy is either bounded or grows at
least as fast as φ(n) = log(qn).

Let us also mention that the scaling entropy growth gap property does not depend on which
Følner sequence we choose.

Proposition 16. The property of having scaling entropy growth gap does not depend on the choice

of Følner equipment.

Proof. Assume that a group G has a scaling entropy growth gap with respect to a Følner se-
quence {Fn}. Let φ(n) be a corresponding bound and {Wn} another Følner sequence in G.

For any integer n, there exits some kn such that for any r > kn the inequality |FnWr△Wr| <
2−n|Wr| is satisfied. Let (X,µ,G) be a free p.m.p. action of G and ρ a measurable metric bounded
from above by one almost everywhere. Then

(29)
1

|Wr|
∑

g∈Wr

g−1 1

|Fn|
∑

h∈Fn

h−1ρ 6
1

|Wr |
∑

f∈FnWr

f−1ρ = GWr

av ρ+ l1,

where the term l1 is bounded in absolute value by 2−n. The last equality holds true due to the
Fn-almost invariance of Wr. Take ε > 0 satisfying H4

√
ε(G

Fn
av ρ) % φ(n). For sufficiently large n,

the term l1 is negligible while computing ε–entropy of GWr
av ρ. Lemma 6 gives

(30) Hε(G
Wr

av ρ) > H4ε(G
Wr

av ρ+ l1) > H4
√
ε(G

Fn

av ρ) % φ(n).

Therefore, G has a scaling entropy growth gap with respect to {Wr} and bound function ψ(r) =
φ(n(r)), where n(r) is the maximal n such that kn < r. �

The fact that every compact representation decomposes into a direct sum of finite-dimensional
representations implies the absence of a free compact action of the infinite symmetric group S∞.
Indeed, the only finite-dimensional irreducible representations of S∞ are the trivial and sign rep-
resentations, which do not distinguish permutations with the same sign. This observation suggests
the conjecture that S∞ should have a scaling entropy growth gap. It is unknown to the author
whether this conjecture is true or not.
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